Proteomik hilft den Einfluss genetischer Variationen zu verstehen

Es wurden massenspektrometrische Methoden eingesetzt, um bislang unbekannte Proteine und Proteinkomplexe zu identifizieren, deren Bindung an die DNA durch SNPs beeinflusst wird. (Foto: Abb. A S. 40)

Das Risiko für zahlreiche komplexe Krankheiten wie Typ-2-Diabetes wird durch Veränderungen an unserem Erbgut erhöht, der DNA. Ein Mitspieler bei der Krankheitsentstehung sind Einzelnukleotid-Polymorphismen, die Wissenschaftler nur kurz „Snips“ (SNPs – Single Nucleotide Polymorphisms) nennen. Bei SNPs treten Variationen eines einzelnen Basenpaares in einem DNA-Molekül auf, wobei die dadurch beeinflussten Mechanismen meist unklar sind.

Es ist bekannt, dass manche dieser Risiko-SNPs die Regulation von Genen beeinflussen. Außerdem ist bekannt, dass die Genregulation von besonderen Proteinen gesteuert wird. Risiko-SNPs beeinflussen vermutlich, wie diese Proteine oder Proteinkomplexe an die DNA binden.

„Bisher ist es Wissenschaftlern nur selten gelungen, bei krankheitsspezifischen SNPs eine unterschiedliche Bindung von genregulatorischen Protein Komplexen nachzuweisen“, erklärt Dr. Helmut Laumen von der Klinischen Kooperationsgruppe (KKG) Interaktion von Ernährung und Genetik bei Typ 2 Diabetes mellitus und der Pädiatrischen Ernährungsmedizin der TUM. Die KKG ist eine Kooperation des Helmholtz Zentrums München (Institut für Epidemiologie 2) und der Technischen Universität München (Else Kröner-Fresenius-Zentrum für Ernährungsmedizin).

„Interessant wäre insbesondere, mehr über die verschiedenen beteiligten Proteine zu erfahren, die einen starken Einfluss auf die Regulation von Genen haben“, sagt Laumen. Ein Team des Helmholtz-Zentrums München und der TUM hat diese durch SNP beeinflussten Mechanismen genauer analysiert und darüber eine Studie in „Nucleic Acids Research“ veröffentlicht.
Das Team hat hochempfindliche massenspektrometrische Methoden eingesetzt, um damit bislang unbekannte Proteine und Proteinkomplexe zu identifizieren, deren Bindung an die DNA durch SNPs beeinflusst wird.

„Die bislang bestehende Lücke zwischen genetischen Variationen und dem Verständnis ihrer funktionellen Auswirkung auf den Organismus konnten wir schließen“, erzählt Dr. Stefanie Hauck, Leiterin der Abteilung Proteinanalytik und Core Facility Proteomics am Helmholtz Zentrum München.

„Konkret wenden wir diese Methode auf SNPs an, die für Typ-2-Diabetes und die Altersbedinge Makuladegeneration (AMD) relevant sind“, sagt Hauck. „Mit dem Verfahren lassen sich künftig für alle krankheitsassoziierten SNPs funktionell relevante Proteine identifizieren, um zu klären, welche Mechanismen hinter einem Krankheitsbild stecken.“ Das exakte Verständnis der molekularen Mechanismen, die durch regulatorische SNPs verändert werden, kann zur weiteren Entwicklung der personalisierten Medizin beitragen.

Weitere Informationen
An der Arbeit waren die Abteilung Proteinanalytik und Core Facility Proteomics (Helmholtz Zentrum München), die Klinische Kooperationsgruppe Klinischen Kooperationsgruppe Interaktion von Ernährung und Genetik bei Typ 2-Diabetes mellitus (Helmholtz Zentrum München, Technische Universität Mün-chen) und das Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (Technische Universität München, Klinische Ernährungsmedizin, Pädiatrische Ernährungsmedizin) beteiligt.

Publikation:
Allele-specific quantitative proteomics unravels molecular mechanisms modulated by cis-regulatory PPARG locus variation. Nucleic Acids Research, 02/2017. DOI: 10.1093/nar/gkx105

Kontakt:
Technische Universität München
Pädiatrische Ernährungsmedizin
Dr. Helmut Laumen
Phone: +49-8161-71-2467
E-Mail: helmut.laumen@tum.de

Helmholtz Zentrum München
Research Unit Protein Science
Dr. Stefanie Hauck
Ph.: +49-89-3187-3941
E-Mail: hauck@helmholtz-muenchen.de

Die Technische Universität München (TUM) ist mit mehr als 500 Professorinnen und Professoren, rund 10.000 Mitarbeiterinnen und Mitarbeitern und 40.000 Studierenden eine der forschungsstärksten Technischen Universitäten Europas. Ihre Schwerpunkte sind die Ingenieurwissenschaften, Naturwissenschaften, Lebenswissenschaften und Medizin, verknüpft mit Wirtschafts- und Sozialwissenschaften. Die TUM handelt als unternehmerische Universität, die Talente fördert und Mehrwert für die Gesellschaft schafft. Dabei profitiert sie von starken Partnern in Wissenschaft und Wirtschaft. Weltweit ist sie mit einem Campus in Singapur sowie Verbindungsbüros in Brüssel, Kairo, Mumbai, Peking, San Francisco und São Paulo vertreten. An der TUM haben Nobelpreisträger und Erfinder wie Rudolf Diesel, Carl von Linde und Rudolf Mößbauer geforscht. 2006 und 2012 wurde sie als Exzellenzuniversität ausgezeichnet. In internationalen Rankings gehört sie regelmäßig zu den besten Universitäten Deutschlands.

Das Helmholtz Zentrum München verfolgt als Deutsches Forschungszentrum für Gesundheit und Umwelt das Ziel, personalisierte Medizin für die Diagnose, Therapie und Prävention weit verbreiteter Volkskrankheiten wie Diabetes mellitus und Lungenerkrankungen zu entwickeln. Dafür untersucht es das Zusammenwirken von Genetik, Umweltfaktoren und Lebensstil. Der Hauptsitz des Zentrums liegt in Neuherberg im Norden Münchens. Das Helmholtz Zentrum München beschäftigt rund 2.300 Mitarbeiter und ist Mitglied der Helmholtz-Gemeinschaft, der 18 naturwissenschaftlich-technische und medizinisch-biologische Forschungszentren mit rund 37.000 Beschäftigten angehören.

https://doi.org/10.1093/nar/gkx105 Studie
https://www.tum.de/die-tum/aktuelles/pressemitteilungen/detail/article/33820/ Artikel

Media Contact

Dr. Ulrich Marsch Technische Universität München

Alle Nachrichten aus der Kategorie: Medizin Gesundheit

Dieser Fachbereich fasst die Vielzahl der medizinischen Fachrichtungen aus dem Bereich der Humanmedizin zusammen.

Unter anderem finden Sie hier Berichte aus den Teilbereichen: Anästhesiologie, Anatomie, Chirurgie, Humangenetik, Hygiene und Umweltmedizin, Innere Medizin, Neurologie, Pharmakologie, Physiologie, Urologie oder Zahnmedizin.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Lichtmikroskopie: Computermodell ermöglicht bessere Bilder

Neue Deep-Learning-Architektur sorgt für höhere Effizienz. Die Lichtmikroskopie ist ein unverzichtbares Werkzeug zur Untersuchung unterschiedlichster Proben. Details werden dabei erst mit Hilfe der computergestützten Bildverarbeitung sichtbar. Obwohl bereits enorme Fortschritte…

Neue Maßstäbe in der Filtertechnik

Aerosolabscheider „MiniMax“ überzeugt mit herausragender Leistung und Effizienz. Angesichts wachsender gesetzlicher und industrieller Anforderungen ist die Entwicklung effizienter Abgasreinigungstechnologien sehr wichtig. Besonders in technischen Prozessen steigt der Bedarf an innovativen…

SpecPlate: Besserer Standard für die Laboranalytik

Mehr Effizienz, Tempo und Präzision bei Laboranalysen sowie ein drastisch reduzierter Materialverbrauch: Mit der SpecPlate ersetzt das Spin-off PHABIOC aus dem Karlsruher Institut für Technologie (KIT) durch innovatives Design gleich…