Warum das Gehör so leistungsfähig ist

Ergebnisse von Tübinger Physiologen zu Forschungen am Innenohr in ’Science’

Das menschliche Ohr kann sehr leise Töne und selbst feinste Unterschiede in der Tonhöhe wahrnehmen. Schon länger ist der Hörprozess, die Verarbeitung der über die Luft übertragenen Schallwellen im Ohr, bekannt. Allein durch die mechanischen Eigenschaften des Innenohrs lässt sich die große Hörleistung der Säugetiere jedoch nicht erklären. Forscher hatten bereits herausgefunden, dass beim Hörvorgang auch ein aktiver Verstärkungs-Prozess eine Rolle spielt. Unter der Leitung von Prof. Bernd Fakler haben Dr. Dominik Oliver, Dr. Nikolaj Klöcker, Dr. Jost Ludwig, Dr. Uwe Schulte und Prof. J. Peter Ruppersberg vom Institut für Physiologie der Universität Tübingen zusammen mit Marburger und amerikanischen Kollegen die molekularen Grundlagen dieses Verstärkers im Detail untersucht. Ihre Ergebnisse werden in der heutigen Ausgabe der Fachzeitschrift Science (22. Juni 2001, Vol. 292, No. 5525) veröffentlicht.

Stark vereinfacht gesagt werden Geräusche oder Töne, Luftvibrationen, die auf das Trommelfell treffen, mechanisch über die Gehörknöchelchen im Ohr übertragen. Über das so genannte ’ovale Fenster’ werden sie auf eine wässrige Flüssigkeit in einem Organ weitergeleitet, das in der Form der schraubigen Schale einer Schnecke ähnelt – die Cochlea im Innenohr. Die Bewegung der Flüssigkeit in der Cochlea führt schließlich dazu, dass winzige, haarförmige Sinneszellen abgelenkt werden. Ihre Auslenkung melden sie über Nerven an das Gehirn, wo dann die Hörempfindung ausgelöst wird. Dieser komplizierte Prozess reicht jedoch noch nicht aus, um die große Leistungsfähigkeit des Gehörs zu erklären. Zusätzlich laufen elektrische Prozesse an den Haarsinneszellen in der Cochlea ab: Sie ändern ihre Länge als Antwort auf Änderungen der elektrischen Spannung in ihrer Zellmembran. Dadurch wird der eintreffende Schallreiz verstärkt.

Die Längenänderung, so haben Forscher kürzlich entdeckt, wird von einem elektrisch empfindlichen Motormolekül vermittelt, dem Eiweiß Prestin, das die äußere Hülle der Haarsinneszelle durchspannt. Die Tübinger Physiologen haben nun herausgefunden, was wiederum das Motormolekül Prestin antreibt: negativ geladene Teilchen (Ionen) im Innern der Haarsinneszellen. Denn wenn diese Ionen im Experiment entfernt wurden, konnten die Haarsinneszellen ihre Länge nicht mehr ändern, da sich das Motormolekül Prestin nicht mehr bewegte. Damit ergibt sich ein Modell, in dem die negativ geladenen Ionen als Sensoren wirken, die von der elektrischen Spannung in das Prestinmolekül hineingedrückt werden und so seine Formänderungen bewirken. Die Formänderung des Prestins wiederum steuert die Längenänderung der Haarsinneszellen und ermöglicht so die große Empfindlichkeit des Gehörs.

Die Grundlagenforschung der Tübinger Wissenschaftler soll helfen, die Vorgänge im Innenohr des Menschen besser zu verstehen. Denn Störungen der Verstärkerfunktion der Haarsinneszellen sind eine der Hauptursachen für Schwerhörigkeit.


Nähere Informationen:

Prof. Bernd Fakler
Physiologisches Institut
Gmelinstraße 5
72076 Tübingen
Tel. 0 70 71/2 97 71 73
Fax 0 70 71/8 78 15
E-Mail: bernd.fakler@uni-tuebingen.de

Media Contact

Michael Seifert idw

Alle Nachrichten aus der Kategorie: Medizin Gesundheit

Dieser Fachbereich fasst die Vielzahl der medizinischen Fachrichtungen aus dem Bereich der Humanmedizin zusammen.

Unter anderem finden Sie hier Berichte aus den Teilbereichen: Anästhesiologie, Anatomie, Chirurgie, Humangenetik, Hygiene und Umweltmedizin, Innere Medizin, Neurologie, Pharmakologie, Physiologie, Urologie oder Zahnmedizin.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Schimpanse in einem tropischen Wald, der genetische Anpassungen zum Überleben zeigt.

Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen

Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…

RNA-bindendes Protein RbpB reguliert den Stoffwechsel der Darmmikrobiota in Bacteroides thetaiotaomicron.

Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität

HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…