Heidelberger Wissenschaftler entwickeln neue Methode zur Früherkennung von Krebserkrankungen
Verfahren zum Nachweis einzelner p53-Autoantikörper im Blutserum zeichnet sich durch geringen Aufwand und schnelle Analysezeit aus
Dass Zellen kontrolliert wachsen und sich differenzieren – folglich eine bestimmte „Aufgabe“ erfüllen können -, dafür sind eine Vielzahl von Proteinen verantwortlich. Deren Struktur und Funktion wiederum ist in den Genen angelegt. Veränderungen in den jeweiligen Genen des Zellkerns können nun dazu führen, dass aus einer „normalen“ Zelle eine Krebszelle wird. Von besonderer Bedeutung sind dabei Schäden in der Erbsubstanz solcher Gene, die bei der „Unterdrückung“ eines Tumors eine Rolle spielen: so genannte Tumorsuppressor-Gene. Die durch diese Gene codierten Proteine wirken unter normalen Umständen als Barrieren gegen unkontrolliertes Zellwachstum und gegen die Weitergabe genetischer Fehlinformation.
Eine herausragende Rolle besitzt in diesem Zusammenhang das p53-Tumorsuppressor-Gen. Bei 60 bis 80 Prozent aller Tumoren – unabhängig von deren Art und Herkunft – konnten Wissenschaftler inzwischen Mutationen in eben diesem Gen nachweisen. Entscheidend ist dabei: Alle bisher beschriebenen Mutationen des p53-Gens haben letztlich den gleichen Effekt – den Verlust der Tumor-unterdrückenden Eigenschaften. Die Folge: eine Krebserkrankung droht.
Unterstützt von der VolkswagenStiftung mit einer Förderung in Höhe von 224.000 Mark, entwickelten die Forscher Dr. Markus Sauer und Professor Dr. Jürgen Wolfrum vom Physikalisch-Chemischen Institut der Universität Heidelberg eine neue Methode zum Nachweis einzelner p53-Autoantikörper unmittelbar in Blutseren – ein deutlicher Fortschritt zu bisherigen diagnostischen Möglichkeiten. Im Folgenden Einzelheiten zum Verfahren:
Liegt keine Erkrankung vor, lässt sich das p53-Protein im Blutserum nur schwer nachweisen. Der Grund: Durch die kurze Halbwertszeit, also den schnellen Abbau der Moleküle, liegen lediglich geringe Mengen des Proteins in „normalen“, also nicht „erkrankten“ Zellen vor. Nicht so, wenn das p53-Gen mutiert ist: Dann steigt die biologische Halbwertszeit des Proteins von zehn bis zwanzig Minuten auf annähernd 48 Stunden. Das führt wenig überraschend dazu, dass sich viel mehr Protein in der Zelle anhäuft, als das normalerweise der Fall ist. Da „mutantes“ p53-Protein zudem das Immunsystem aktiviert, reagieren viele Tumorpatienten spürbar mit der Bildung so genannter p53-Autoantikörper.
An eben jenen p53-Autoantikörpern haben die Heidelberger Forscher angesetzt – lässt sich nach dem derzeitigen Stand der Forschung doch nur an der Anwesenheit dieser Moleküle im Blutserum mit fast hundertprozentiger Sicherheit eine vorhandene Tumorerkrankung erkennen. „Ein möglichst empfindlicher und schneller Nachweis sowohl bei der serologischen Diagnostik unterschiedlicher Tumorerkrankungen als auch bei einer Nachuntersuchung ist folglich von größter Bedeutung“, sagt Dr. Markus Sauer.
———————————————————–
Kontakt: Universität Heidelberg, Dr. Markus Sauer, Tel.: 06221/548460, Fax: 06221/544255, E-Mail: sauer@urz.uni-heidelberg.de
———————————————————–
Durch die Förderung im Rahmen des Schwerpunkts „Physik, Chemie und Biologie mit Einzelmolekülen“ der VolkswagenStiftung konnte an der Universität Heidelberg nun auf der Grundlage der geschilderten Erkenntnisse ein Verfahren zum Nachweis einzelner p53-Autoantikörper entwickelt werden – ein Nachweis, der direkt im Blutserum erfolgt. Der entscheidende Ansatz der Wissenschaftler war folgender: Sie nutzten aus, dass das Immunsystem nicht auf die Mutationen des p53-Proteins reagiert, sondern vielmehr hauptsächlich auf das eine Ende des Proteinmoleküls. Das heißt also: Die Immunantwort – über die ja der diagnostische Nachweis läuft – wird durch die vermehrte Anwesenheit des Kernproteins verursacht. Mehrfach konnten die Forscher zeigen, dass das Immunsystem hauptsächlich gegen zwei kurze Abschnitte – so genannte Epitope – am Proteinende reagiert, die aus wenigen Aminosäuren bestehen.
Diese Bereiche nun markierten die Wissenschaftler und machten sie über eine Farbreaktion unter Zuhilfenahme der Einzelmolekülspektroskopie sichtbar. Ohne hier auf Einzelheiten einzugehen: Die Leistung der Forscher vom Physikalisch-Chemischen Institut der Universität Heidelberg – Kooperationspartner eines Teilprojekts ist Dr. Christoph Zander von der Universität Siegen – besteht vor allem darin, dass sie eben jene immunogen wirkenden, farbstoffmarkierten Peptid-Epitope entwickelten, die die Gegenwart von p53-Autoantikörpern durch einen drastischen Fluoreszenzanstieg aufzeigen. p53-Autoantikörperkonzentrationen lassen sich damit im Bereich von 10-11 bis 10-12 Mol pro Liter sicher nachweisen – und damit explizit als Einzelmoleküle.
Dass das Ganze funktioniert, ist anhand von Blutseren verschiedener Patienten mit einer p53-Mutation bereits nachgewiesen. Das Verfahren beansprucht dabei nur wenige Minuten. „Dieser einzigartige Einzelmolekülnachweis eignet sich auf Grund des geringen Kostenaufwands und der schnellen Analysezeit hervorragend sowohl für die Früherkennung als auch die Verlaufskontrolle von Tumorerkrankungen“, beschreibt Sauer die Vorteile.
Kontakt Förderprojekt VolkswagenStiftung: Dr. Ulrike Bischler, Tel.: 0511/8381 – 350, Fax: 0511/8381 – 344, E-Mail: bischler@volkswagenstiftung.de<
Media Contact
Alle Nachrichten aus der Kategorie: Medizin Gesundheit
Dieser Fachbereich fasst die Vielzahl der medizinischen Fachrichtungen aus dem Bereich der Humanmedizin zusammen.
Unter anderem finden Sie hier Berichte aus den Teilbereichen: Anästhesiologie, Anatomie, Chirurgie, Humangenetik, Hygiene und Umweltmedizin, Innere Medizin, Neurologie, Pharmakologie, Physiologie, Urologie oder Zahnmedizin.
Neueste Beiträge
Lichtmikroskopie: Computermodell ermöglicht bessere Bilder
Neue Deep-Learning-Architektur sorgt für höhere Effizienz. Die Lichtmikroskopie ist ein unverzichtbares Werkzeug zur Untersuchung unterschiedlichster Proben. Details werden dabei erst mit Hilfe der computergestützten Bildverarbeitung sichtbar. Obwohl bereits enorme Fortschritte…
Neue Maßstäbe in der Filtertechnik
Aerosolabscheider „MiniMax“ überzeugt mit herausragender Leistung und Effizienz. Angesichts wachsender gesetzlicher und industrieller Anforderungen ist die Entwicklung effizienter Abgasreinigungstechnologien sehr wichtig. Besonders in technischen Prozessen steigt der Bedarf an innovativen…
SpecPlate: Besserer Standard für die Laboranalytik
Mehr Effizienz, Tempo und Präzision bei Laboranalysen sowie ein drastisch reduzierter Materialverbrauch: Mit der SpecPlate ersetzt das Spin-off PHABIOC aus dem Karlsruher Institut für Technologie (KIT) durch innovatives Design gleich…