Coronavirus: Reproduktionszahl genauer geschätzt
Die Coronavirus-Pandemie beeinflusst unser Leben weiterhin – täglich gibt es neue Informationen und aktuelle Zahlen. Neben der Zahl der neuen Fälle gilt die Reproduktionszahl R als wichtiger Indikator für das Infektionsgeschehen.
Die Reproduktionszahl gibt an, wie viele Personen ein Infizierter im Mittel ansteckt. Liegt R über 1, weist dies darauf hin, dass die Zahl der täglichen Neuinfektionen steigt, was besondere öffentliche Aufmerksamkeit hervorruft. Die Reproduktionszahl ist von großer Bedeutung für den Umgang mit der Pandemie.
Doch ihre Schätzung anhand mathematischer Modelle ist mit gewissen Unsicherheiten behaftet – unter anderem deshalb, weil die gemeldeten Fallzahlen wochentagsabhängig sind und örtliche Ausbrüche sie sprunghaft steigen lassen.
Forscher am Institut für Automation und angewandte Informatik (IAI) des KIT haben nun eine Methode zur Schätzung einer zeitabhängigen Reproduktionszahl R entwickelt, die unerwünschte Zeitverzögerungen vermeidet und wöchentliche Periodizitäten kompensiert. In einer Publikation des KIT stellen die Wissenschaftler ihre Methode am Beispiel von SARS-CoV-2-Infektionen und COVID-19 vor, wobei sie auf die vom Robert Koch-Institut (RKI) veröffentlichten Daten zurückgreifen.
Die Reproduktionszahl basiert auf dem Quotienten der Zahl der Neuerkrankungen in zwei aufeinanderfolgenden Zeiträumen. Um Diagnose-, Übermittlungs- und Meldeverzüge auszugleichen, greift die Schätzung auf ein statistisches Verfahren zurück, das sogenannte Nowcasting.
Ein mathematisches Filter dient dazu, die Daten zu glätten, um beispielsweise Schwankungen im Wochenverlauf oder Verzerrungen durch örtliche Ausbrüche auszugleichen. Für ihre Methode zogen die Forscher Zeiträume von sieben Tagen heran und verwendeten ein sogenanntes akausales Filter.
Während kausale Filter nur vergangene und gegenwärtige Werte verwenden, setzen akausale Filter auch zukünftige Werte ein. Dabei erfolgt die Schätzung der zukünftigen Fallzahlen auf der Basis des gleichen Wochentags der Vorwoche. Bei Bedarf lassen sich auch Feiertage berücksichtigen.
„Akausale Filter vermeiden unerwünschte Zeitverzögerungen, wie sie bei kausalen Filtern auftreten“, erklärt Professor Ralf Mikut vom IAI, der die Methode konzipiert hat. „Der Ansatz, zukünftige Zahlen auf der Basis des gleichen Tags der Vorwoche zu schätzen, hat sich in anderen Bereichen mit wöchentlicher Periodizität bewährt – beispielsweise bei der Lastprognose in Energiezeitreihen.“
Die Karlsruher Wissenschaftler verglichen ihre Methode mit den existierenden Ansätzen des RKI und stellten fest, dass sie wöchentliche Periodizitäten besser ausgleicht sowie Phasen reduziert, in denen R nur scheinbar über 1 liegt.
Aus dem von der Helmholtz Information & Data Science School for Health (HIDSS4Health) und der Helmholtz Artificial Intelligence Coorporation Unit (Helmholtz AI) geförderten Projekt leiten die Wissenschaftler die allgemeinen Empfehlungen ab, bei der Schätzung der Reproduktionszahl die Wochentagsabhängigkeit aller Ergebnisse konsequent zu prüfen und bei wochentagsabhängigen Fallzahlen durchgängig Filter mit einer Filterlänge von sieben Tagen einzusetzen sowie akausale Filter zu verwenden, um Zeitverzögerungen zumindest teilweise zu kompensieren.
Originalpublikation (Open Access):
Ralf Mikut, Tillmann Mühlpfordt, Markus Reischl, Veit Hagenmeyer: Schätzung einer zeitabhängigen Reproduktionszahl R für Daten mit einer wöchentlichen Periodizität am Beispiel von SARS-CoV-2-Infektionen und COVID-19. KIT, 2020. DOI: 10.5445/IR/1000119466
Publikation:
https://publikationen.bibliothek.kit.edu/1000119466
Code und Daten:
https://github.com/timueh/COVID-19
Weiterer Kontakt:
Sandra Wiebe, SEK-Gesamtkommunikation, Tel.: +49 721 608-46212, E-Mail: sandra.wiebe@kit.edu
Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 25 100 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.
Diese Presseinformation ist im Internet abrufbar unter: http://www.sek.kit.edu/presse.php
Media Contact
Alle Nachrichten aus der Kategorie: Medizin Gesundheit
Dieser Fachbereich fasst die Vielzahl der medizinischen Fachrichtungen aus dem Bereich der Humanmedizin zusammen.
Unter anderem finden Sie hier Berichte aus den Teilbereichen: Anästhesiologie, Anatomie, Chirurgie, Humangenetik, Hygiene und Umweltmedizin, Innere Medizin, Neurologie, Pharmakologie, Physiologie, Urologie oder Zahnmedizin.
Neueste Beiträge
Brechen des Eises: Gletscherschmelze verändert arktische Fjordökosysteme
Die Regionen der Arktis sind besonders anfällig für den Klimawandel. Es mangelt jedoch an umfassenden wissenschaftlichen Informationen über die dortigen Umweltveränderungen. Forscher des Helmholtz-Zentrums Hereon haben nun an Fjordsystemen anorganische…
Globale Studie identifiziert Gene für Depressionen in verschiedenen Ethnien
Neue genetische Risikofaktoren für Depression wurden erstmals in allen großen Weltbevölkerungen identifiziert und ermöglichen es Wissenschaftler*innen, das Risiko für Depression unabhängig von der ethnischen Zugehörigkeit vorherzusagen. Die bislang größte und…
Zurück zu den Grundlagen: Gesunder Lebensstil reduziert chronische Rückenschmerzen
Rückenschmerzen im unteren Rückenbereich sind weltweit eine der Hauptursachen für Behinderungen, wobei viele Behandlungen wie Medikamente oft keine dauerhafte Linderung bieten. Forscher des Centre for Rural Health der Universität Sydney…