Frühzeitige Diagnose und individuelle Behandlung von Krebserkrankungen durch Molekulare Bildgebung und Therapie
Eines der großen Ziele der modernen Medizin ist es, jedem Patienten eine individuell auf ihn zugeschnittene Behandlung zu bieten. Da sich die Ursachen von Erkrankungen, wie beispielsweise Krebs, aber trotz gleicher Symptome zwischen verschiedenen Patienten stark unterscheiden können, ist es für eine solche individualisierte Behandlung notwendig, die beim einzelnen Patienten vorliegenden molekularen Veränderungen nachzuweisen. Erst dann können hochspezifische Medikamente eingesetzt und die Erkrankung so ohne gefährliche Nebenwirkungen behandelt werden.
Für diese individualisierte molekulare Behandlung spielt die Nuklearmedizin eine Schlüsselrolle. Sie diagnostiziert und therapiert Erkrankungen mithilfe radioaktiver Substanzen (sogenannte Marker), die an spezifische molekulare Zielstrukturen wie Rezeptoren, Antigene, Transportproteine und Enzyme binden. Die Molekulare Bildgebung ist dabei mit ihren nuklearmedizinischen Methoden das wesentliche Bindeglied zwischen dem modernen, molekularen Krankheitsverständnis einerseits und den maßgeschneiderten molekularen Therapien andererseits. Die Nuklearmedizinische Therapie hingegen erweitert das Arsenal der molekularen Therapieformen.
Die Nuklearmedizin trägt heute vor allem mit Hilfe der Positronen-Emissions-Tomographie (PET) wesentlich zur Frühdiagnose von Krebserkrankungen bei und spielt eine entscheidende Rolle bei der Beurteilung der Wirksamkeit von Medikamenten zu ihrer Behandlung. Die radioaktiven Marker setzen bei diesem molekularen Bildgebungsverfahren elektromagnetische Strahlung frei, die den Körper durchdringt. Mittels moderner Messtechnik kann diese Strahlung sehr empfindlich nachgewiesen und quantifiziert werden. Die nuklearmedizinische Messtechnik ist dabei deutlich empfindlicher als die anderer Verfahren der medizinischen Bildgebung wie beispielsweise die Magnetresonanztomographie (MRT), die Computertomographie (CT) oder das Ultraschall-Verfahren. Einzig und allein diese hohe Empfindlichkeit ermöglicht die Darstellung der in der Regel nur in extrem niedriger Konzentration vorliegenden Rezeptoren, Enzyme und Transporter. Molekulare Veränderungen werden so im Körper des Patienten sichtbar gemacht, ihr Verlauf beobachtet und die daraus entstehenden funktionellen Konsequenzen für den Organismus bestimmt. Durch die PET-Untersuchung können so z.B. Krebserkrankungen diagnostiziert, die Ausbreitung der Krebszellen im Körper sichtbar gemacht und der Erfolg von Behandlungen nachgewiesen werden.
Anders als bei anderen medikamentösen Therapien, die in der Regel „blind“ und in Standarddosen gegeben werden, kann für nuklearmedizinische Therapien durch die molekulare Bildgebung bereits vor der Behandlung ermittelt werden, ob ein Medikament das erkrankte Gewebe erreicht, wie stark es sich dort anreichert und wie lange es gespeichert bleibt. So kann für jeden Patienten individuell eine optimale Dosis für die Therapie berechnet werden.
In der nuklearmedizinischen Therapie werden radioaktiv markierte Moleküle eingesetzt, die sich spezifisch im krankhaften Gewebe anreichern und dieses selektiv bestrahlen. Im Unterschied zur molekularen Bildgebung werden hierbei Teilchenstrahler eingesetzt, die im Gewebe nur eine sehr geringe Reichweite besitzen, dafür aber eine sehr hohe lokale Wirkung im erkrankten Gewebe entfalten. Das gesunde Gewebe wird gleichzeitig aufgrund der geringen Reichweite der Strahlung nur minimal belastet.
Die Behandlung von Lymphomen mit radioaktiv markierten Antikörpern (Radioimmuntherapie), die Therapie von neuroendokrinen Tumoren (NET) mit radioaktiv markierten Peptiden (Radiopeptidtherapie) sowie die Behandlung von Leberkrebs mit radioaktiven Partikeln („selective internal radiotherapy“, SIRT) stellen weitere, heutzutage sehr erfolgreiche nuklearmedizinische Therapieformen dar. Ziel der nuklearmedizinischen Forschung ist es, derartige Therapien auf andere Krebserkrankungen wie Prostata- oder Brustkrebs zu erweitern.
Aber auch bei der Diagnose und Behandlung von Schilddrüsenerkrankungen sowie der Bestimmung des Risikos für Herzinfarkte wird die Nuklearmedizin seit längerem erfolgreich für die molekulare Diagnostik und Therapie eingesetzt. Außerdem ist die Frühdiagnose der Alzheimer-Demenz ebenfalls mit Hilfe des PET-Verfahrens möglich.
Die molekulare Bildgebung und Therapie ist ein Schwerpunktthema auf der 48. Jahrestagung NuklearMedizin 2010 der Deutschen Gesellschaft für Nuklearmedizin e.V. Diese findet vom 21. bis 24. April 2010 im Congress Center Leipzig (CCL) statt. Mit der Kombination aus Kongress, für den international renommierte Referenten und ausgesuchte Keynote-Sprecher gewonnen werden konnten, einem interaktiven Fortbildungsprogramm sowie der in Deutschland größten, branchenspezifischen Industrieausstellung hat sich die Tagung als bedeutendste nationale Tagung für Nuklearmedizin im europäischen Raum etabliert. In diesem Jahr werden rund 2.000 Teilnehmer – Mediziner, Naturwissenschaftler, medizinisch-technisches Personal, Pflegekräfte und Patienten – erwartet.
Sämtliche Informationen zur Jahrestagung NuklearMedizin 2010 stehen auf der Kongresshomepage http://www.nuklearmedizin2010.de zur Verfügung. Dort ist auch die Presseakkreditierung zum Kongress möglich.
______________________________________
Kontakt:
Deutsche Gesellschaft für Nuklearmedizin e.V.
Pressereferat, Stefanie Neu
Nikolaistraße 29, D-37073 Göttingen
Tel. 0551.48857-402
info@nuklearmedizin.de
Media Contact
Alle Nachrichten aus der Kategorie: Medizin Gesundheit
Dieser Fachbereich fasst die Vielzahl der medizinischen Fachrichtungen aus dem Bereich der Humanmedizin zusammen.
Unter anderem finden Sie hier Berichte aus den Teilbereichen: Anästhesiologie, Anatomie, Chirurgie, Humangenetik, Hygiene und Umweltmedizin, Innere Medizin, Neurologie, Pharmakologie, Physiologie, Urologie oder Zahnmedizin.
Neueste Beiträge
Wirksamkeit von Metformin zur primären Krebsprävention
Eine Studie der Deutschen Krebshilfe bietet Menschen mit Li-Fraumeni-Syndrom neue präventive Strategien: Forschende der Medizinischen Hochschule Hannover (MHH) untersuchen in einer neuen Wirksamkeitsstudie erstmals, ob das krebsfreie Überleben bei LFS-Betroffenen…
Innovative Algorithmen für eine nachhaltige und flexible KI
Die Entwicklung und der Einsatz künstlicher Intelligenz verschlingen jede Menge Ressourcen. Das neue BMBF-geförderte Forschungsprojekt COMFORT will das ändern. Verantwortlich dafür ist der Würzburger Mathematiker Leon Bungert. Keine Frage: Das…
Neue Rezeptur für Gleistragplatten
Mit einem Material aus recycelten Kunststoffen und alten Rotorblättern soll die betonlastige Eisenbahninfrastruktur in Deutschland modernisiert werden. Sie unterhalten sich über Mischungen, Mischungsverhältnisse und Zusatzstoffe und es klingt, als seien…