Schwächelt das Herz, werden die molekularen Motoren hochgefahren

Struktur des Enzyms „NIMA-assoziierte Kinase 9“ (NEK9), das die molekularen Motoren der Herzmuskelzellen modifiziert. Quelle: Universitätsklinikum Heidelberg

Forschungsgruppe unter Federführung des Universitätsklinikums Heidelberg identifizierte Enzym, das Motorproteine von Herzmuskelzellen modifiziert und so deren Funktion beeinflusst / Ergebnisse in Nature Communications veröffentlicht.

Auf den ersten Blick klingen die Ergebnisse paradox: Bei Patienten mit einer bestimmten Form der Herzschwäche sind die molekularen Motoren der Herzmuskelzellen, die sogenannten Myosin-Komplexe, häufig an bestimmten Bereichen chemisch verändert und können dadurch mehr Leistung bringen. Das haben Forschende des Universitätsklinikums Heidelberg (UKHD) und des Herz- und Diabeteszentrums Nordrhein-Westfalen (HDZ NRW), Bad Oeynhausen (Ruhr-Universität Bochum) herausgefunden und außerdem entdeckt, welches Enzym dafür verantwortlich ist. Die Arbeitsgruppe um den Heidelberger Kardiologen Professor Dr. Benjamin Meder geht davon aus, dass der neu beschriebene Regulationsmechanismus der Ermüdung des Herzmuskels gegensteuern soll. Er könnte somit einen neuen Ansatzpunkt zur Behandlung von Herzschwäche eröffnen. Die Ergebnisse sind online im Journal Nature Communications erschienen und wurden vom Deutschen Zentrum für Herz-Kreislauf Forschung e.V. (DZHK) ausgezeichnet.

Myosine sorgen als molekulare Motoren für eine gleichmäßige Kontraktion der Herzmuskelzellen. Indem sie ihre Form verändern, verschieben sie bestimmte Elemente des Zellskeletts, die Aktin-Filamente, gegeneinander: Die Herzmuskelzelle zieht sich zusammen. Chemische Modifikationen dieser Proteine sind für die Herzmuskelzellen ein wichtiger Regelmechanismus, um auf veränderte Belastungen reagieren zu können. So wirken sich sogenannte Phosphorylierungen, das Anbinden zusätzlicher Phosphatgruppen an das Protein, positiv auf die Kontraktionskraft der Zellen aus und sorgen für einen Kraftschub bei stärkerer Belastung.

Modifikationen bei bestimmter Form der Herzschwäche entdeckt

Die Arbeitsgruppe um Prof. Meder und Dr. Marion Müller entwickelte eine spezielle Messmethode, um Phosphorylierungen eines kleinen Proteins des Kontraktionsapparats, der essentiellen leichten Kette des Myosins (ELC), zu detektieren. „Wir waren überrascht, ausgerechnet bei Patienten mit einer sogenannten dilatativen Kardiomyopathie einen erhöhten Anteil an Protein-Phosphorylierungen an der essentiellen leichten Kette des Myosins zu finden“, sagt Erstautorin Dr. Müller, die inzwischen vom UKHD an das Agnes-Wittenborg Institut für translationale Herz- und Kreislaufforschung am HDZ NRW gewechselt ist. Die dilatative Kardiomyopathie ist eine chronische Herzerkrankung, bei der der Herzmuskel quasi ausleiert und kontinuierlich an Pumpkraft verliert. Dr. Müller vermutet: “Die Modifikationen könnten ein Versuch der Herzzellen sein, den zunehmenden Funktionsverlust zu kompensieren.“ Insgesamt identifizierte das Team neun Phosphorylierungsstellen an dem vergleichsweise winzigen ELC-Protein.

Die Wissenschaftler identifizierten zudem den Urheber der Modifikationen und damit einen wichtigen Akteur in diesem Regelmechanismus: Das Enzym „NIMA-assoziierte Kinase 9“ (NEK9) kommt zu einem hohen Anteil im linken Herzmuskel des Menschen vor, bindet an das ELC-Protein und reguliert die Phosphorylierung. Versuche an Zebrafischen bestätigten die Schlüsselrolle von NEK9: Bei genetisch veränderten Tieren, denen ein bestimmter Teil des Enzyms fehlte, blieben die Phosphorylierungen und damit die Anpassung der Herzfunktion aus, sie entwickelten eine Herzschwäche. „Dieser Regulationsmechanismus lädt die Herzmotoren förmlich elektrochemisch auf und könnte möglicherweise für die medikamentöse Therapie bei Herzschwäche genutzt werden, indem man die Herzfunktion über eine Erhöhung der ELC-Phosphorylierung unterstützt“, so Studienleiter Meder, Professor für Präzisionsmedizin an der Klinik für Kardiologie, Angiologie und Pneumologie am UKHD.

Die Forschungsarbeit entstand am UKHD im Rahmen eines von der Deutschen Forschungsgesellschaft und des Deutschen Zentrums für Herz-Kreislauf Forschung e.V. (DZHK) geförderten Projektes und in enger Zusammenarbeit mit dem HDZ NRW, Bad Oeynhausen. Weitere Kollaborationspartner sind die „Core Facility for Mass Spectrometry & Proteomics“ des Zentrums für Molekulare Biologie der Universität Heidelberg, die Klinik und Poliklinik für Kardiologie am Universitätsklinikum in Leipzig, sowie das „Genome Technology Center“ der Stanford Universität, USA.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Benjamin Meder
Stv. Ärztlicher Direktor
Klinik für Kardiologie, Angiologie und Pneumologie am UKHD
Tel. (Sekr.): 06221 56-310184
E-Mail: isabell.mohr@med.uni-heidelberg.de

Originalpublikation:

Müller, M., Eghbalian, R., Boeckel, JN. et al. NIMA-related kinase 9 regulates the phosphorylation of the essential myosin light chain in the heart. Nat Commun 13, 6209 (2022). https://doi.org/10.1038/s41467-022-33658-2

Weitere Informationen:

https://www.klinikum.uni-heidelberg.de/zentrum-fuer-innere-medizin-medizin-klini…
https://www.klinikum.uni-heidelberg.de/zentrum-fuer-innere-medizin-krehl-klinik/…
https://dzhk.de/aktuelles/aktuelles/paper-of-the-month/

 

https://dzhk.de/aktuelles/news/artikel/schwaechelt-das-herz-werden-die-molekularen-motoren-hochgefahren/

Media Contact

Julia Bird Unternehmenskommunikation
Universitätsklinikum Heidelberg

Alle Nachrichten aus der Kategorie: Medizin Gesundheit

Dieser Fachbereich fasst die Vielzahl der medizinischen Fachrichtungen aus dem Bereich der Humanmedizin zusammen.

Unter anderem finden Sie hier Berichte aus den Teilbereichen: Anästhesiologie, Anatomie, Chirurgie, Humangenetik, Hygiene und Umweltmedizin, Innere Medizin, Neurologie, Pharmakologie, Physiologie, Urologie oder Zahnmedizin.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen

An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…

Tsunami-Frühwarnsystem im Indischen Ozean

20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….

Tropfsteine geben Auskunft über die Dynamik des Klimas in Europa

Geowissenschaftler untersuchen Stalagmiten in rumänischer Höhle, um regionale Niederschlagsmuster zu rekonstruieren. Dynamische Prozesse in der atmosphärischen Zirkulation wie der Nordatlantische Jetstream haben Einfluss auf regionale Veränderungen des Niederschlags. Das zeigen…