I-call – Wenn Mikroimplantate miteinander kommunizieren / Innovationstreiber Digitalisierung – »Smart Health«

Ultraschallbasierte Signalübertragung von Implantaten im menschlichen Körper. © Fraunhofer IBMT

Wenn mikroelektronische Systeme für medizintechnische Anwendungen eingesetzt werden, müssen sie hohe Anforderungen hinsichtlich Biokompatibilität, Zuverlässigkeit, Energieverbrauch und Integrationsfähigkeit erfüllen.

Oft spielen vielfältige, ganz heterogene Bestandteile, wie sensorische und aktorische Baugruppen sowie Komponenten zur Signalverarbeitung, Kommunikation und Energiegewinnung zusammen, um die technologische Basis für eine verbesserte Patientenversorgung zu schaffen.

Anfang 2018 startete das vom Fraunhofer-Institut für Biomedizinische Technik IBMT koordinierte BMBF-Verbundprojekt »I-call – Mikroelektromechanisches System zur akustischen Kommunikation zwischen Implantaten«, mit dem Ziel, erstmals ein Elektroniksystem zur ultraschallbasierten, sicheren und störresistenten Signal- und Datenübertragung zwischen Implantaten im menschlichen Körper zu entwickeln.

Sogenannte kapazitive Ultraschallwandler (cMUTs – capacitive micromachined ultrasonic transducers), wie sie aus der ultraschallbasierten Bildgebung bekannt sind, erzeugen und detektieren hochfrequente Ultraschallsignale, die sich im Körper über große Strecken ausbreiten können.

Diese stark miniaturisierten Wandler lassen sich direkt in die eingesetzten Schaltkreise (ASICs) integrierten. Neben den maßgeschneiderten cMUTs für die drahtlose Kommunikation, speziellen ASICs, die die cMUTs ansteuern und die Ultraschallsignale verarbeiten, entwickeln die Verbundpartner Kommunikationsprotokolle für die Kommunikation per Ultraschall.

Um durch Rauschen und Echos verursachte Störungen zu kompensieren, verwendet »I-call« eine dem »Singen« von Delphinen und Walen nachgeahmte Methode der akustischen Kommunikation. Die Signalenergie wird dabei durch einen kontinuierlichen Frequenzwechsel auf einen breiten Frequenzbereich verteilt und am Empfänger wieder in schmalbandige Signale umgewandelt.

Die als besonders breitbandige Ultraschallwandler bekannten cMUTs eignen sich für diese Methode hervorragend. Auch wenn die aus Silizium gefertigten cMUTs im Gegensatz zu etablierten Ultraschallwandlern per se biokompatibel und damit für eine Implantation geeignet sind, werden sie vorrangig in einem hermetischen Metallgehäuse (z. B. aus Titan) eingesetzt und sind so vor Beschädigungen geschützt.

Verschiedene Gehäusegeometrien und Methoden für die Schallankopplung werden bezüglich ihrer Eignung untersucht und weiterentwickelt. Alles im Dienst einer langzeitstabilen, biokompatiblen Signalübertragung – sie hat insbesondere für die Leistungssteigerung von Neuroprothesen große Bedeutung, da in diesem Bereich mehrere Implantateinheiten große Datenströme parallel übermitteln.

Implantierbare Systeme mit verteilter Intelligenz

Das Fraunhofer IBMT bringt seine langjährige Expertise in der Entwicklung biomedizinischer Mikrosysteme sowie von Ultraschallwandlern ein und zeichnet im Projekt für die Simulation und Realisierung von cMUTs in Volumenmikromechanik sowie deren Charakterisierung verantwortlich. Darüber hinaus entwickeln die Wissenschaftler und Ingenieure die Implantatelektronik und die zur Steuerung der Implantatkommunikation notwendige Firmware.

Mit diesem innovativen technologischen Ansatz werden zukünftig implantierbare Systeme mit verteilter Intelligenz möglich. Zukunftsweisend sind insbesondere der Einsatz hochintegrierter cMUTs in Implantaten sowie deren ultraschallkompatible Häusung.

Der Einsatz von Ultraschall für die Kommunikation ist hervorragend für den Einsatz im hauptsächlich aus Wasser bestehenden Körper geeignet und bietet im Gegensatz zu einer Kommunikation mit elektromagnetischen Signalen Vorteile, wie eine hohe Reichweite im Körper trotz kleiner Baugröße, praktisch keine Dämpfung durch ein Titangehäuse und eine hohe Abhörsicherheit.

Verbundkoordinator
Fraunhofer-Institut für Biomedizinische Technik IBMT, Sulzbach/Saar

Partner
PREMA Semiconductor GmbH, Mainz
EvoLogics GmbH, Berlin
microFab Service GmbH, Bremen
OSYPKA AG, Rheinfelden
PlascoTec GmbH, Wuppertal

Förderung: BMBF 16ES0752K
Förderzeitraum: 01/2018-12/2020
Fördervolumen: 3,74 Mio. €

Kontakt
Prof. Dr. Klaus-Peter Hoffmann
Projektleiter, Leiter der Hauptabteilung Biomedizintechnik
Fraunhofer-Institut für Biomedizinische Technik IBMT
66280 Sulzbach/Saar
Tel: +49 6897 9071 400
E-Mail: klaus-peter.hoffmann@ibmt.fraunhofer.de

Dr. Thomas Velten
Projektkoordinator, Abteilungsleiter Biomedizinische Mikrosysteme
Tel: +49 6897 9071 450
E-Mail: thomas.velten@ibmt.fraunhofer.de
https://www.ibmt.fraunhofer.de

https://www.ibmt.fraunhofer.de/

Media Contact

Dipl.-Phys. Annette Maurer-von der Gathen Fraunhofer-Institut für Biomedizinische Technik IBMT

Alle Nachrichten aus der Kategorie: Medizintechnik

Kennzeichnend für die Entwicklung medizintechnischer Geräte, Produkte und technischer Verfahren ist ein hoher Forschungsaufwand innerhalb einer Vielzahl von medizinischen Fachrichtungen aus dem Bereich der Humanmedizin.

Der innovations-report bietet Ihnen interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Bildgebende Verfahren, Zell- und Gewebetechnik, Optische Techniken in der Medizin, Implantate, Orthopädische Hilfen, Geräte für Kliniken und Praxen, Dialysegeräte, Röntgen- und Strahlentherapiegeräte, Endoskopie, Ultraschall, Chirurgische Technik, und zahnärztliche Materialien.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…