Künstliche Intelligenz für die Osteoporose-Diagnostik
Forschende der Uni Kiel haben eine Software entwickelt, die Wirbelbrüche auf CT-Bildern automatisch erkennt und prognostisch bewertet.
Im Alter baut sich die Knochensubstanz vieler Menschen ab. Dieser als Osteoporose bezeichnete Prozess bleibt oft unbemerkt, selbst wenn es zu Brüchen an den Wirbelkörpern kommt. Mittels Röntgenuntersuchung oder Computertomografie (CT) könnte die Wirbelfraktur zwar nachgewiesen werden, aber dazu kommt es nicht immer. Zum Beispiel weil das CT aus anderen Gründen gemacht und ein Wirbelbruch im Alltagsstress in der Klinik übersehen wird.
Zur Verbesserung der Osteoporose-Diagnostik haben Forschende um Professor Claus-Christian Glüer von der Sektion Biomedizinische Bildgebung der Klinik für Radiologie und Neuroradiologie am Universitätsklinikum Schleswig-Holstein (UKSH), Campus Kiel, und des Molecular Imaging North Competence Center (MOIN CC), eine Software entwickelt. Das Programm verwendet Methoden der künstlichen Intelligenz (KI) und kann damit automatisch auf Computertomographien, die aus den verschiedensten Gründen aufgenommen werden, Hinweise auf Osteoporose und prognostisch ungünstige Wirbelbrüche erkennen.
Die neuesten Ergebnisse stellte der Doktorand der Arbeitsgruppe Eren Yilmaz kürzlich bei der Konferenz „SPIE Medical Imaging“ in San Diego, Kalifornien, vor und publizierte sie im Tagungsband Proceedings of SPIE (Society of Photo-Optical Instrumentation Engineers, SPIE). Gefördert wurden die Arbeiten im Forschungsschwerpunkt Kiel Life Science (KLS) der Christian-Albrechts-Universität zu Kiel (CAU) durch die Projekte ARTEMIS vom Bundesministerium für Bildung und Forschung und KI-RAD vom Bundesministerium für Wirtschaft und Energie.
KI erkennt 9 von 10 Wirbelbrüchen in CT-Bildern
Oft werden CT-Bilder vom Brustkorb aufgenommen, um zum Beispiel die Lunge anzuschauen. Die Wirbelsäule ist zwar auf dem Bild zu sehen, wird aber nicht geprüft, weil vielleicht ein anderes Problem im Vordergrund steht. „Unser Programm kann bei solchen Untersuchungen im Hintergrund laufen. Es schaut sich automatisch die Wirbelsäule an und gibt einen Hinweis auf Frakturen der Wirbelkörper, die ansonsten vielleicht nicht entdeckt worden wären“, erklärt Erstautor Yilmaz. Das ist wichtig, denn das Vorhandensein von Wirbelfrakturen erhöht das Risiko weiterer Brüche erheblich. Die Software arbeitet mit sogenannten neuronalen Netzen. Das sind Algorithmen, die der Funktionsweise des menschlichen Gehirns nachempfunden sind, und häufig eingesetzt werden, um Muster zu erkennen. An 159 CT-Bildern der Wirbelsäule, die aus sieben Krankenhäusern Deutschlands stammten, wurde die KI getestet. Erfahrenen Radiologinnen und Radiologen begutachteten zuvor die Bilder und entdeckten 170 Frakturen. „90 Prozent der Fälle mit Frakturen klassifizierte das neuronale Netz korrekt sowie 87 Prozent der Wirbel ohne Frakturen“, berichtet Yilmaz.
Darüber hinaus kann das Programm aber nicht nur Brüche erkennen, sondern auch zwischen milden Frakturen (Grad 1) und schwereren (Grad 2 oder höher) unterscheiden. „Diese Diagnostik ist für Abschätzung der zukünftigen Frakturrisikos entscheidend“, so Yilmaz. Dies gelte insbesondere auch für Hüftfrakturen, die gerade im Alter mit hoher Einschränkung von Lebensqualität und erhöhter Sterblichkeit einhergehen. „Wir entwickeln somit ein Frühwarnsystem zur Prävention schwerwiegender Konsequenzen von Osteoporose“. Für den generellen Einsatz in der Klinik ist die Technik noch nicht verfügbar. Sie soll aber in absehbarer Zeit zumindest für Forschungszwecke eingesetzt werden können.
Über Kiel Life Science (KLS)
Das interdisziplinäre Zentrum für angewandte Lebenswissenschaften – Kiel Life Science (KLS) – vernetzt an der CAU Forschungen aus den Agrar- und Ernährungswissenschaften, den Naturwissenschaften und der Medizin. Es bildet einen von vier Forschungsschwerpunkten an der Universität Kiel und will die zellulären und molekularen Prozesse besser verstehen, mit denen Lebewesen auf Umwelteinflüsse reagieren. Im Mittelpunkt der Forschung stehen Fragen, wie sich landwirtschaftliche Nutzpflanzen an spezielle Wachstumsbedingungen anpassen oder wie im Zusammenspiel von Genen, dem individuellen Lebensstil und Umweltfaktoren Krankheiten entstehen können. Gesundheit wird dabei immer ganzheitlich im Kontext der Evolution betrachtet. Unter dem Dach des Forschungsschwerpunkts sind derzeit rund 80 Wissenschaftlerinnen und Wissenschaftler aus 40 Instituten und sechs Fakultäten der CAU als Vollmitglieder versammelt.
Fotos stehen zum Download bereit:
https://www.uni-kiel.de/de/pressemitteilungen/2023/115-scan.png
2D-Schnittbild einer CT-Aufnahme auf der zwei Frakturen zu sehen sind. Sie wurden von der KI richtigerweise als moderat (Grad 2) klassifiziert. Die anderen Wirbel wurden korrekt als „normal“ (Grad 0) erkannt
© Eren Yilmaz
https://www.uni-kiel.de/de/pressemitteilungen/portraitbilder/eren-yilmaz.jpg
Der Informatiker Eren Yilmaz entwickelt in seiner Promotion Methoden der Künstlichen Intelligenz zur Bilderkennung
© privat
Weitere Informationen:
Molecular Imaging North Competence Center (MOIN CC), Medizinische Fakultät, CAU
https://www.moincc.de
Forschungsschwerpunkt Kiel Life Science, CAU:
https://www.kls.uni-kiel.de
Christian-Albrechts-Universität zu Kiel Presse, Kommunikation und Marketing,
Eva Sittig, Text/Redaktion: Kerstin Nees
Postanschrift: D-24098 Kiel, Telefon: (0431) 880-2104, Telefax: (0431) 880-1355
E-Mail: presse@uv.uni-kiel.de Internet: www.uni-kiel.de Twitter: www.twitter.com/kieluni
Facebook: www.facebook.com/kieluni Instagram: www.instagram.com/kieluni
Wissenschaftliche Ansprechpartner:
Eren Yilmaz
Sektion Biomedizinische Bildgebung
Molecular Imaging North Competence Center (MOIN CC), Medizinische Fakultät, CAU
Klinik für Radiologie und Neuroradiologie, UKSH, Campus Kiel
Tel.: 0431- 500-15123
E-Mail: eren.yilmaz@rad.uni-kiel.de
Originalpublikation:
Eren B. Yilmaz, Tobias Fricke, Julian Laue, Constanze Polzer, Sam Sedaghat, Jan-Bernd Hövener, Claus-Christian Glüer, Carsten Meyer, „Towards fracture risk assessment by deep-learning-based classification of prevalent vertebral fractures,“ Proc. SPIE 12465, Medical Imaging 2023: Computer-Aided Diagnosis, 124651D (7 April 2023); https://doi.org/10.1117/12.2653526
Media Contact
Alle Nachrichten aus der Kategorie: Medizintechnik
Kennzeichnend für die Entwicklung medizintechnischer Geräte, Produkte und technischer Verfahren ist ein hoher Forschungsaufwand innerhalb einer Vielzahl von medizinischen Fachrichtungen aus dem Bereich der Humanmedizin.
Der innovations-report bietet Ihnen interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Bildgebende Verfahren, Zell- und Gewebetechnik, Optische Techniken in der Medizin, Implantate, Orthopädische Hilfen, Geräte für Kliniken und Praxen, Dialysegeräte, Röntgen- und Strahlentherapiegeräte, Endoskopie, Ultraschall, Chirurgische Technik, und zahnärztliche Materialien.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…