Mit Schallwellen durchs Gehirn

Blutgefässe im Gehirn mit Ansammlungen von Mikrovehikeln in Orange (Mikroskopie-​Aufnahme). (Bild: Del Campo Fonseca et al. Nature Communications 2023, bearbeitet)

For­schen­de ha­ben erst­mals ge­zeigt, dass sich Mi­kro­ve­hi­kel über Ul­tra­schall durch die Blut­ge­fäs­se des Ge­hirns von Mäu­sen steu­ern las­sen. Dies soll der­einst neue The­ra­pien er­mög­li­chen, mit de­nen punkt­ge­nau Me­di­ka­men­te ver­ab­reicht wer­den.

In Kür­ze

  • Ei­ne in den ver­gan­ge­nen Jah­ren an der ETH Zü­rich ent­wi­ckel­te Tech­no­lo­gie zur Steue­rung von Mi­kro­ve­hi­keln mit Ul­tra­schall funk­tio­niert auch im Ge­hirn, wie For­schen­de nun zei­gen konn­ten.
  • Als Mi­kro­ve­hi­kel die­nen Gas­bläs­chen. Die­se sind un­ge­fähr­lich und lö­sen sich nach ge­ta­ner Ar­beit auf.
  • In Zu­kunft könn­ten die­se Mi­kro­ve­hi­kel mit Me­di­ka­men­ten be­stückt wer­den, um die­se im Ge­hirn ge­zielt ab­zu­ge­ben. Dies könn­te die Wir­kung der Me­di­ka­men­te er­hö­hen und ih­re Ne­ben­wir­kun­gen ver­rin­gern.

Eine in den vergangenen Jahren an der ETH Zürich entwickelte Technologie zur Steuerung von Mikrovehikeln mit Ultraschall funktioniert auch im Gehirn, wie Forschende nun zeigen konnten. Als Mikrovehikel dienen Gasbläschen. Diese sind ungefährlich und lösen sich nach getaner Arbeit auf. In Zukunft könnten diese Mikrovehikel mit Medikamenten bestückt werden, um diese im Gehirn gezielt abzugeben. Dies könnte die Wirkung der Medikamente erhöhen und ihre Nebenwirkungen verringern.

Hirntumore, Hirnblutungen sowie neurologische und psychische Erkrankungen lassen sich oft nur schwer mit Medikamenten behandeln. Selbst wenn es wirksame Medikamente gibt, haben diese oft starke Nebenwirkungen, weil sie im ganzen Gehirn zirkulieren und nicht nur in dem Bereich, in dem sie wirken sollen. Wissenschaftlerinnen und Wissenschaftler setzen daher grosse Hoffnungen in die Möglichkeit, Medikamente im Gehirn künftig gezielter an einem eng begrenzten Wirkort zu deponieren. Sie sind deshalb daran, Mini-​Transportvehikel zu entwickeln, die sie durch die reich verzweigten Blutbahnen steuern können.

Forschenden der ETH Zürich, der Universität und des Universitätsspitals Zürich ist es nun erstmals gelungen, mit Mikrovehikeln, die sich mit Ultraschall steuern lassen, durch die Blutgefässe im Gehirn eines Tieres zu navigieren.

Ultraschall statt Magnetismus

Gegenüber alternativen Navigationstechniken wie jener über Magnetfelder, hat Ultraschall Vorteile, wie Daniel Ahmed, Professor für Akustische Robotik an der ETH Zürich und Leiter der Studie, erklärt: «Ultraschall wird in der Medizin bereits breit eingesetzt, dringt tief in den Körper ein und ist sicher.»

Als Mikrovehikel nutzten er und seine Kolleg:innen gasgefüllte Bläschen mit einer Hülle aus Fettsäuren – demselben Bestandteil, aus dem die Membranen biologischer Zellen bestehen. Die Bläschen haben einen Durchmesser von eineinhalb Mikrometern und werden heute als Kontrastmittel in der Ultraschall-​Bildgebung eingesetzt.

Wie die Forschenden nun zeigen, lassen sich diese Bläschen durch die Blutbahn steuern. «Da die Vesikel bereits für den Einsatz beim Menschen zugelassen sind, werden wir unsere Technologie wahrscheinlich schneller zur Zulassung und Anwendung beim Menschen bringen können als alternative Mikrovehikel, an denen derzeit geforscht wird», sagt Ahmed, der für sein Projekt zur Erforschung und Entwicklung dieser Technologie 2019 einen «Starting Grant» des Europäischen Forschungsrats ERC erhalten hat.

Ein weiterer Vorteil der ultraschallgesteuerten Mikrobläschen ist, dass sie sich nach getaner Arbeit im Körper zersetzen. Bei der Steuerung über Magnetfelder, einem anderen Ansatz, müssen die Mikrovehikel magnetisch sein, und es ist nicht ganz einfach biologisch abbaubare magnetische Mikrovehikel zu entwickeln. Ausserdem sind die Mikrobläschen der ETH-​Forschenden klein und weich. «Wir können damit leicht durch enge Blutkapillaren navigieren», sagt Alexia Del Campo Fonseca, Doktorandin in Ahmeds Gruppe und Erstautorin der Studie.

Transport gegen die Fliessrichtung

Die Steuerung der Mikrobläschen in engen Gefässen haben Ahmed und seine Gruppe in den vergangenen Jahren im Labor entwickelt. Nun hat er sie zusammen mit Forschenden der Universität und des Universitätsspitals Zürich in den Blutgefässen des Gehirns von Mäusen getestet. Die Forschenden injizierten die Bläschen in den Blutkreislauf der Mäuse. Ohne äussere Kontrolle werden die Bläschen vom Blutstrom mitgerissen. Den Forschenden gelang es jedoch, die Vesikel mit Ultraschall an Ort zu halten oder sie gegen die Fliessrichtung des Bluts durch Gehirngefässe zu steuern. Die Forschenden konnten die Bläschen auch über verschlungene Blutbahnen lenken oder sie die Richtung mehrfach wechseln lassen um sie in feinste Verästelungen der Blutgefässe zu navigieren.

Um die Mikrovehikel zu steuern, haben die Forschenden aussen am Schädel der Mäuse vier kleine Energiewandler befestigt. Diese erzeugen Schwingungen im Ultraschallbereich, die sich im Gehirn als Wellen ausbreiten. Dabei können sich die Wellen von zwei oder mehreren Energiewandlern an bestimmten Stellen im Gehirn gegenseitig auslöschen oder verstärken. Die Wissenschaftler:innen navigieren die Bläschen über eine ausgeklügelte dynamische Steuerung der einzelnen Energiewandler. Ein Echtzeit-​Bildfeedback zeigt ihnen dabei, wohin sich die Bläschen bewegen.

Für die Bildgebung in dieser Studie nutzten die Forschenden die Zweiphoton-​Mikroskopie. In Zukunft möchten die Wissenschaftler:innen auch Ultraschall zur Bildgebung nutzen, wozu sie die Ultraschalltechnik weiterentwickeln wollen.

In dieser Studie waren die Mikrobläschen nicht mit Medikamenten bestückt. Die Forschenden wollten zunächst die Vehikel durch die Blutgefässe steuern und die Machbarkeit im Gehirn aufzeigen. Dort liegen vielversprechende medizinische Anwendungen, von Krebs über Schlaganfällen bis zu psychischen Erkrankungen. In einem nächsten Schritt möchten die Forschenden Wirkstoffmoleküle für den Transport aussen an die Bläschenhülle heften. Und sie möchten das gesamte Verfahren so weiterentwickeln, dass es auch im Menschen funktioniert. Darauf basierend sollen in Zukunft neue Therapien entwickelt werden.

Originalpublikation:

Del Campo Fonseca A, Glück C, Droux J, Ferry Y, Frei C, Wegener S, Weber B, El Amki M, Ahmed D: Ultrasound trapping and navigation of microrobots in the mouse brain vasculature. Nature Communications 2023, 14: 5889, doi: 10.1038/s41467-​023-41557-3

Weitere Informationen:

https://ethz.ch/de/news-und-veranstaltungen/eth-news/news/2023/12/mit-schallwell…

Media Contact

Peter Rüegg Hochschulkommunikation
Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Medizintechnik

Kennzeichnend für die Entwicklung medizintechnischer Geräte, Produkte und technischer Verfahren ist ein hoher Forschungsaufwand innerhalb einer Vielzahl von medizinischen Fachrichtungen aus dem Bereich der Humanmedizin.

Der innovations-report bietet Ihnen interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Bildgebende Verfahren, Zell- und Gewebetechnik, Optische Techniken in der Medizin, Implantate, Orthopädische Hilfen, Geräte für Kliniken und Praxen, Dialysegeräte, Röntgen- und Strahlentherapiegeräte, Endoskopie, Ultraschall, Chirurgische Technik, und zahnärztliche Materialien.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spitzenforschung in der Bioprozesstechnik

Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…

Datensammler am Meeresgrund

Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…

Rotorblätter für Mega-Windkraftanlagen optimiert

Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…