Mit winzigen Blüten Medikamente transportieren

Diese Blütenteilchen aus Zinkoxid sind drei Mikrometer gross (kolorierte elektronenmikroskopische Aufnahme).
(c) Dong Wook Kim / Max-Planck-Institut für Intelligente Systeme

Mit Mikropartikel aus hauchdünnen Blättern können Medikamente über die Blutbahn punktgenau zu einem Tumor oder einem Blutgerinnsel transportiert werden. Ultraschall und andere akustische Verfahren steuern die Partikel durch den Körper und machen ihre Position sichtbar. Das macht ihre Anwendung einfach, denn Ultraschall ist ein in der Medizin etabliertes Verfahren.

Diese kleinen Teilchen erinnern an Papierblumen oder Sandrosen. Mit ihnen können Ärztinnen und Ärzte Medikamente im Körper punktgenau ans Ziel bringen. Der grosse Vorteil: Weil die Partikel Schallwellen streuen, lassen sie sich gut mit Ultraschall nachverfolgen.

Wie bringt man ein Medikament im Körper genau dorthin, wo es wirken soll? An dieser Frage forschen Wissenschaftlerinnen und Wissenschaftler schon länger. Es geht beispielsweise darum, Krebsmedikamente zu einem Tumor zu transportieren, damit sie nur dort wirken und im Rest des Körpers keine Nebenwirkungen verursachen. Die Forschung sucht nach Trägerpartikeln, an die ein Wirkstoff gebunden werden kann. Solche Partikel müssen eine ganze Reihe von Bedingungen erfüllen, darunter folgende drei: Sie müssen erstens möglichst viele Wirkstoffmoleküle aufnehmen, zweitens mit einem einfachen Verfahren wie Ultraschall durch die Blutbahnen gelenkt und ihr Weg durch den Körper muss drittens mit einem bildgebenden Verfahren verfolgt werden können. Nur wenn dieser letzte Punkt erfüllt ist, lässt sich überprüfen, ob der Medikamententransport funktioniert hat.

Die Teilchen ähneln winzigen Papierblumen oder Sandrosen und setzen sich selbst zusammen.
Die Teilchen ähneln winzigen Papierblumen oder Sandrosen und setzen sich selbst zusammen. Grafik: Kim et al. Advanced Materials 2024, verändert

Alle diese Anforderungen unter einen Hut zu bringen, war für die Wissenschaft eine Knacknuss. Forschende unter der Leitung der ETH Zürich haben nun für eine spezielle Klasse von Partikeln gezeigt, dass sie die Bedingungen hervorragend erfüllen. Diese Teilchen sind nicht nur leistungsfähig, sie sehen unter dem Mikroskop auch hübsch aus: Sie ähneln winzigen Papierblumen oder Sandrosen. Aufgebaut sind sie aus hauchdünnen Blättchen, die sich selbstorganisierend zu Blüten zusammenfügen. Diese Blütenteilchen haben einen Durchmesser von einem bis fünf Mikrometern, was kleiner ist als ein rotes Blutkörperchen.

Ihre Form begünstigt zwei Eigenschaften: Zum einen haben die Blütenpartikel im Verhältnis zu ihrer Grösse eine riesige Oberfläche. Die Zwischenräume zwischen den vielen dicht gepackten Blütenblättern sind nur wenige Nanometer breit und wirken wie Poren. Dadurch können sie sehr grosse Wirkstoffmengen aufnehmen. Zum anderen streuen die Blütenblätter Schallwellen oder sie lassen sich mit Molekülen beschichten, die Licht absorbieren. Mit Ultraschall oder der sogenannten optoaktustischen Bildgebung sind sie deshalb sehr gut sichtbar.

Diese Ergebnisse veröffentlichten die Gruppen von Daniel Razansky und Metin Sitti jüngst im Fachmagazin externe SeiteAdvanced Materials. Razansky ist Professor für biomedizinische Bildgebung an der ETH Zürich und an der Universität Zürich. Sitti ist Experte für Mikrorobotik und war bis vor kurzem Professor an der ETH Zürich und am Max-Planck-Institut für Intelligente Systeme in Stuttgart. Jetzt arbeitet er an der Koç Üniversitesi in Istanbul.

Besser als Gasbläschen

«Bisher haben Forschende für den Transport durch die Blutbahn mit Ultraschall oder anderen akustischen Methoden vor allem winzige Gasbläschen untersucht», sagt Paul Wrede, Mitautor der Studie und Doktorand in Razanskys Gruppe. «Wir zeigen nun, dass man auch feste Mikropartikel akustisch steuern kann.» Der Vorteil der Blumenpartikel gegenüber den Bläschen: Man kann sie mit einer grösseren Menge an Wirkstoffmolekülen beladen.

In Experimenten in der Petrischale zeigten die Forschenden, dass sich die Blütenpartikel mit einem Krebsmedikament beladen lassen. Ausserdem injizierten sie die Partikel in die Blutbahn von Mäusen. Mit fokussiertem Ultraschall hielten sie die Teilchen an einer vorher festgelegten Stelle im Blutkreislauf fest. Dies funktionierte, obschon das Blut weiter zirkulierte und an den Partikeln vorbeifloss. Fokussierter Ultraschall ist eine Technik, bei der Schallwellen auf einen Punkt gebündelt werden. «Wir injizieren die Partikel also nicht einfach und hoffen auf das Beste, sondern wir können sie kontrollieren», sagt Wrede. Mit dieser Technik wollen die Forscher eines Tages Medikamente zu Tumoren transportieren oder zu Thromben, welche Blutgefässe verstopfen.

Je nach Anwendung und je nach Bildgebungsverfahren, mit dem die Forschenden die Position der Partikel kontrollieren möchten, stellen sie sie aus verschiedenen Materialien her und beschichten sie unterschiedlich. «Das grundlegende Funktionsprinzip beruht auf ihrer Form, nicht auf dem Material, aus dem sie bestehen», sagt Wrede. In ihrer Studie untersuchten die Forschenden eingehend Blütenpartikel aus Zinkoxid. Zudem testeten sie Partikel aus dem Kunststoff Polyimid und aus einem Verbundmaterial, das aus Nickel und organischen Verbindungen zusammengesetzt ist.

Nun möchten die Forschenden den Ansatz weiterentwickeln. Zunächst planen sie weitere Untersuchungen in Tieren, bevor die Technik allenfalls auch Menschen mit Kreislauferkrankungen oder Krebs zugutekommen kann.

Wissenschaftliche Ansprechpartner:

Paul Wrede, paul.wrede@inf.ethz.ch

Originalpublikation:

https://onlinelibrary.wiley.com/doi/10.1002/adma.202404514

Weitere Informationen:

https://ethz.ch/de/news-und-veranstaltungen/eth-news/news/2024/12/mit-winzigen-b…

Media Contact

Peter Rüegg Hochschulkommunikation
Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Medizintechnik

Kennzeichnend für die Entwicklung medizintechnischer Geräte, Produkte und technischer Verfahren ist ein hoher Forschungsaufwand innerhalb einer Vielzahl von medizinischen Fachrichtungen aus dem Bereich der Humanmedizin.

Der innovations-report bietet Ihnen interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Bildgebende Verfahren, Zell- und Gewebetechnik, Optische Techniken in der Medizin, Implantate, Orthopädische Hilfen, Geräte für Kliniken und Praxen, Dialysegeräte, Röntgen- und Strahlentherapiegeräte, Endoskopie, Ultraschall, Chirurgische Technik, und zahnärztliche Materialien.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Schimpanse in einem tropischen Wald, der genetische Anpassungen zum Überleben zeigt.

Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen

Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…

RNA-bindendes Protein RbpB reguliert den Stoffwechsel der Darmmikrobiota in Bacteroides thetaiotaomicron.

Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität

HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…