Winziger Sensor könnte Krebserkrankung schnell erkennen und überwachen
Physiker und Biochemiker der Universität haben eine neuartige Technikplattform entwickelt, die mithilfe von „Fängermolekülen“ , einem durch Magnetfelder und magnetisierte kleinste Partikel gesteuerten Reinigungs- und Transportsystem sowie einem Sensor Indikatoren für das Vorhandensein eines bösartigen Tumors aus Blut oder Gewebeschnitten genau analysieren kann. Darauf haben die Wissenschaftler bereits ein europäisches Patent beantragt.
Bei der Erkennung von Krebserkrankungen spielen sogenannte Biomarker eine große Rolle. Das sind Biomoleküle, die auf das Vorhandensein eines bösartigen Tumors hindeuten, wenn sie in einer bestimmten Menge vorliegen.
Dazu zählen beispielsweise HER2, das bestimmte Brustkrebsarten indizieren kann, und das Oberflächenprotein EpCAM, das bei Epithelzellentumoren verstärkt auftritt. Mithilfe von Antikörpern können diese Moleküle heute bereits detektiert werden. Doch das ist zeit- und kostenaufwändig. Die Analyse der Proben erfolgt in großen Labors.
Hier soll die Entwicklung aus Kassel vieles vereinfachen. Ihre neuartige Technikplattform wollen die Wissenschaftler auf einem nur zwei Zentimeter großen, batteriebetriebenen Diagnose-Chip unterbringen, der ambulant und sogar vom Patienten selbst bedient werden könnte.
Das ist zwar noch Zukunftsmusik. Doch innerhalb von drei Jahren könnte mit den Ergebnissen dieser Grundlagenforschung ein Prototyp gebaut werden, schätzt Prof. Dr. Arno Ehresmann vom Institut für Physik der Universität Kassel.
Er arbeitet bei der Entwicklung des Sensorsystems mit Prof. Dr. Friedrich Herberg vom Institut für Biologie/Biochemie und dem Biochemiker Prof. Dr. Andreas Plückthun von der Universität Zürich zusammen. Ist der Sensor erst marktreif, könnte beispielsweise der Chirurg schon während einer Krebsoperation untersuchen, ob er sämtliches Tumorgewebe entfernt hat, erläutert Prof. Ehresmann.
Gemeinsam haben die drei Wissenschaftler die Grundlagen für die drei Komponenten der Erfindung entwickelt: Prof. Plückthun „baut“ im Labor maßgeschneiderte Fängermoleküle, so genannte DARPins, spezielle, robuste Proteine, die in der Lage sind, Krebs-Biomarker besonders fest an sich zu binden. Prof. Herberg zeichnet für die komplexe Chemie zum Anhängen der Fängermoleküle an magnetische Partikel verantwortlich.
Prof. Ehresmann hat das Transportsystem entwickelt, welches dafür sorgt, dass genügend analysefähiges Material aus der zu untersuchenden Körperflüssigkeit zum Sensor transportiert wird. 0,5 bis 2 Mikrometer kleine magnetisierte Polymerpartikel, in die magnetische Eisenoxidkörnchen eingebettet sind, werden durch ein wechselndes Magnetfeld fortbewegt und gesteuert. Sie dienen den Fängermolekülen, an die die Biomarker angedockt haben, als Vehikel auf ihrem Weg zum Sensor.
Dieser Transportprozess war die besondere Herausforderung für den Wissenschaftler. Denn die zu detektierenden Biomarker sind im Blut nicht gleichmäßig, sondern eher zufällig verteilt. Außerdem verursachen eine Vielzahl anderer Proteine und Moleküle beim Analysevorgang ein „Hintergrundrauschen“, das das Signal der gesuchten Biomarker überdeckt. Weiterhin verklumpen magnetische Partikel, weil sie sich gegenseitig anziehen. Alle drei Probleme hat Ehresmann gelöst. Er nutzt den sogenannten Superparamagnetismus, um die wechselnde magnetische Ausrichtung dieser Teilchen zu steuern und ein Verklumpen zu verhindern.
Die bewegten Partikel sorgen für eine Verwirbelung der zu analysierenden Flüssigkeit und erleichtern so das Andocken von Biomarkern an die Fängermoleküle. Horizontal gestapelte, dünne Schichten aus teilweise magnetisiertem Nanomaterial sorgen für ein magnetisches Kraftfeld, das die zu untersuchenden Molekül-Partikel-Gespanne wie in einem Geleitzug gleichmäßig zur Sensoroberfläche lenkt. Während dieser „Reise“ durchwandern sie mehrere parallel angeordnete streifenförmige Flüssigkeitskanäle, in denen Bestandteile, die die Analyse verfälschen können, nach und nach aus der Flüssigkeit gewissermaßen ausgewaschen werden.
Für den Bau eines Prototyps sind noch hohe Investitionen notwendig. Ehresmann und seine Kollegen prüfen zurzeit, ob die Gründung eines Spin-Off-Unternehmens für die Vermarktung des Sensors geeignet ist, oder ob ein mittelständisches Unternehmen diese vielversprechende Technologie in ein Produkt umsetzt. Ehresmann ist ebenfalls an weiteren Kooperationen mit Ärzten interessiert, damit die vielfältig einsetzbare Technologie zielgerichtet ausdifferenziert werden kann. Die Forscher haben sich mit ihrem Projekt außerdem um Fördermittel aus dem europäischen Forschungsprogramm „Personalising health and care“ (PHC10) beworben, das die Entwicklung neuer Diagnosemethoden und –geräte zum Ziel hat.
Kontakt:
Prof. Dr. Arno Ehresmann
Universität Kassel
Fachgebiet Dünne Schichten und Synchrotronstrahlungen
Tel: +49 561 804-4061
E-Mail: ehresmann@physik.uni-kassel.de
http://www.uni-kassel.de/uni/nc/universitaet/nachrichten/article/winziger-sensor…
Media Contact
Alle Nachrichten aus der Kategorie: Medizintechnik
Kennzeichnend für die Entwicklung medizintechnischer Geräte, Produkte und technischer Verfahren ist ein hoher Forschungsaufwand innerhalb einer Vielzahl von medizinischen Fachrichtungen aus dem Bereich der Humanmedizin.
Der innovations-report bietet Ihnen interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Bildgebende Verfahren, Zell- und Gewebetechnik, Optische Techniken in der Medizin, Implantate, Orthopädische Hilfen, Geräte für Kliniken und Praxen, Dialysegeräte, Röntgen- und Strahlentherapiegeräte, Endoskopie, Ultraschall, Chirurgische Technik, und zahnärztliche Materialien.
Neueste Beiträge
Spezielle Beschichtungen auf der ISS im Test
Montanuniversität Leoben bringt Innovation ins All: Ein bedeutender Schritt für die Weltraumforschung und die Montanuniversität Leoben: Nach langen Vorbereitungsarbeiten sind hochentwickelte Dünnfilmbeschichtungen aus Leoben nun auf der Internationalen Raumstation (ISS)…
Holzfeuerungen mit bis zu 80% weniger NOx-Emissionen
Fraunhofer Forscher haben gemeinsam mit dem Projektpartner Endress Holzfeuerungen eine neuartige Feuerungstechnik entwickelt, die NOx-Emissionen um bis zu 80 Prozent reduzieren kann. Damit können auch zukünftige Grenzwerte zuverlässig eingehalten werden….
Ein neues Puzzlestück für die Stringtheorie-Forschung
Wissenschaftlerin vom Exzellenzcluster Mathematik Münster beweist Vermutung aus der Physik. Dr. Ksenia Fedosova vom Exzellenzcluster Mathematik Münster hat mit einem internationalen Forschungsteam eine Vermutung aus der Stringtheorie bewiesen, die Physikerinnen…