Australische Gräser gestalten als „Ingenieure“ ihre Umwelt

The active formation of nearly circular grassland gaps (fairy circles), as seen from a helicopter.

Stephan Getzin

Feenkreise sind eins der größten Rätsel der Natur und eins der visuell verblüffendsten Phänomene. Ein internationales Forschungsteam unter der Leitung der Universität Göttingen hat nun erstmals detaillierte Daten gesammelt, die zeigen, dass das Modell des britischen Mathematikers Alan Turing die auffälligen Vegetationsmuster der australischen Feenkreise erklärt.

Darüber hinaus machen die Forscherinnen und Forscher anschaulich, dass die Gräser, aus denen diese Muster bestehen, als „Öko-Ingenieure“ ihre eigene feindliche und trockene Umwelt verändern und dadurch das Ökosystem am Leben erhalten. Die Ergebnisse wurden in der Fachzeitschrift Journal of Ecology veröffentlicht.

Wissenschaftlerinnen und Wissenschaftler aus Deutschland, Australien und Israel untersuchten im Outback von Westaustralien mit Drohne und Multispektralkamera, wie stark und gut die nur in Australien heimischen Triodia-Gräser wuchsen. Dafür wurde das Gebiet in fünf, jeweils einen Hektar große, Parzellen aufgeteilt und die Gräser nach hoher und niedriger Vitalität klassifiziert.

Das Team zeichnete zudem kontinuierlich Daten von einer Wetterstation auf. Die systematische und detaillierte Feldarbeit ermöglichte zum ersten Mal, in einem solchen Ökosystem einen umfassenden Test der Theorie der „Turing-Muster“ durchzuführen.

Das Modell von Alan Turing (1912 bis 1954) besagt, dass in bestimmten Systemen aufgrund zufälliger Störungen und eines „Reaktions-Diffusions“-Mechanismus die Interaktion zwischen nur zwei diffundierbaren Substanzen ausreicht, um spontan stark gemusterte Strukturen entstehen zu lassen.

Physikerinnen und Physiker haben dieses Modell verwendet, um die auffälligen Hautmuster zum Beispiel bei Zebrafischen oder Leoparden zu erklären. Frühere Modellierungen der australischen Feenkreise hatten bereits angedeutet, dass diese Theorie auch auf diese faszinierenden Vegetationsmuster zutreffen könnte. Mit der aktuellen Studie liegen robuste Daten vor, die dies nun bestätigen.

Die Daten zeigen, dass das Lückenmuster der australischen Feenkreise, die nur in einem kleinen Gebiet östlich der Stadt Newman vorkommen, aus ökohydrologischen Biomasse-Wasser-Rückkopplungen der Gräser hervorgeht. Die Feenkreise, die vier Meter Durchmesser haben und über verwitterte Oberflächenkrusten verfügen, sind durch den daraus resultierenden Wasserabfluss eine entscheidende zusätzliche Wasserquelle für die Trockenlandvegetation. Die Grasbüschel sorgen zudem für mehr Schatten und ermöglichen, dass mehr Wasser in die nahegelegenen Bereiche um die Wurzeln eindringt.

Mit zunehmender Wachstumszeit nach den immer wiederkehrenden Buschfeuern verschmolzen die einzelnen Gräser mehr und mehr an den Peripherien der Vegetationslücken zu einer Barriere, so dass sie ihre Wasseraufnahme aus dem Abfluss der Feenkreise maximieren konnten. Die schützende Pflanzendecke aus Gräsern kann die Boden-Oberflächentemperatur in der heißesten Tageszeit um etwa 25 Grad Celsius senken, was das Keimen und Wachsen neuer Gräser in der unmittelbaren Nachbarschaft erleichtert. Die Autorinnen und Autoren fanden sowohl im großen Maßstab der Landschaft als auch in viel kleinerem Maßstab der Einzelpflanzen Beweise dafür, dass die Gräser die Wasserressourcen umverteilen, die physische Umwelt verändern und so als „Ökosystemingenieure“ ihre Umwelt zum eigenen Vorteil anpassen.

Dr. Stephan Getzin, Abteilung für Ökosystemmodellierung an der Universität Göttingen, erklärt: „Das Entscheidende ist, dass die Gräser ihre eigene Umwelt aktiv gestalten, indem sie symmetrisch angeordnete Lückenmuster bilden. Die Vegetation profitiert von dem zusätzlichen Abflusswasser, das durch die großen Feenkreise bereitgestellt wird, und hält so das trockene Ökosystem auch unter sehr unwirtlichen, trockenen Bedingungen funktionsfähig.“

Dies steht im Gegensatz zu einer gleichmäßigen Vegetationsdecke, die in weniger wassergestressten Umgebungen zu beobachten ist. „Ohne die Selbstorganisation der Gräser würde dieses Gebiet wahrscheinlich zu einer Wüste werden, die von kahlem Boden dominiert wird“, fügt er hinzu. Das Auftauchen einer gemusterten Vegetation scheint eine Spielart der Natur zu sein, mit permanentem Wassermangel umzugehen.

Als der britische Mathematiker Alan Turing 1952 seine bahnbrechende theoretische Abhandlung über Musterbildung veröffentlichte, hatte er höchstwahrscheinlich noch nie von den Feenkreisen gehört. Doch mit seiner Theorie legte er für Generationen von Physikerinnen und Physikern die Grundlage, um hochgradig symmetrische Muster wie Sandrippeln in Dünen, Wolkenstreifen am Himmel oder Flecken auf dem Fell eines Tieres mit dem Mechanismus der Reaktions-Diffusion zu erklären.

Diese von der Deutschen Forschungsgemeinschaft geförderte Forschung hat Auswirkungen auf die Modellierung und das Verständnis ähnlicher Ökosysteme sowie auf die Identifizierung von Systemen, die ihre fragile Umgebung zum Schutz „selbst gestalten“ können.

Wissenschaftliche Ansprechpartner:

Dr. Stephan Getzin
Georg-August-Universität Göttingen
Büsgen-Institut – Abteilung Ökosystemmodellierung
Büsgenweg 4, 37077 Goettingen
Telefon: +49 551 39-20637
Email: stephan.getzin@uni-goettingen.de
Internet: http://www.uni-goettingen.de/de/112105.html

Originalpublikation:

Stephan Getzin et al. Bridging ecology and physics: Australian fairy circles regenerate following model assumptions on ecohydrological feedbacks. Journal of Ecology 2020. DOI: 10. 10.1111/1365-2745.13493.

Weitere Informationen:

https://www.uni-goettingen.de/de/3240.html?id=5997

Media Contact

Thomas Richter Öffentlichkeitsarbeit
Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz

Dieser Themenkomplex befasst sich primär mit den Wechselbeziehungen zwischen Organismen und den auf sie wirkenden Umweltfaktoren, aber auch im weiteren Sinn zwischen einzelnen unbelebten Umweltfaktoren.

Der innovations report bietet Ihnen interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Klimaschutz, Landschaftsschutzgebiete, Ökosysteme, Naturparks sowie zu Untersuchungen der Leistungsfähigkeit des Naturhaushaltes.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…