Heiße Spur bei Ursachensuche für rapide Eisschildinstabilitäten

Das Forschungsschiff MARIA S. MERIAN verlässt 2014 den Hafen von St. Johns‘ (Kanada). Auf der Expedition MSM 39 (2014) hat Lars Max als Fahrtteilnehmer zusammen mit anderen Forschenden das Material für diese Studie gewonnen.
Foto: MARUM – Zentrum für Marine Umweltwissenschaften, Universität Bremen; D. Kieke

… in der Klimageschichte.

Neue Studie: Wärmestau im tieferen subpolaren Nordatlantik Auslöser für sogenannte Heinrich-Ereignisse.

Extreme Kälteereignisse während der letzten Eiszeit, sogenannte Heinrich-Ereignisse im Nordatlantik, sind ein gutes Beispiel dafür, wie lokale Prozesse das globale Klima veränderten. Während in der Forschung gut dokumentiert ist, wie sich die Heinrich-Ereignisse auf die globale eiszeitliche Umwelt ausgewirkt haben, bleibt die Ursache bisher ungeklärt. Forschende aus Bremen, Kiel, Köln und São Paulo (Brasilien) weisen nun in einer neuen Studie nach, dass ein Wärmestau in der tieferen Labradorsee Instabilitäten des damaligen Laurentidischen Eisschildes, das einen großen Teil Nordamerikas bedeckte, verursachte. Als Folge wurden Heinrich-Ereignisse ausgelöst. Dafür rekonstruierten die Forschenden den Temperatur- und Salzgehalt im subpolaren Nordatlantik. Ihre Ergebnisse sind jetzt in Nature Communications erschienen.

Heinrich-Ereignisse, oder genauer Heinrich-Lagen, sind wiederkehrende, auffällige, meist zehn bis 15 Zentimeter dicke Schichten mit sehr groben Gesteinskomponenten, die die feinkörnigen, ozeanischen Ablagerungen des Nordatlantiks unterbrechen. In der 1980er-Jahren entdeckt und erstmalig beschrieben vom Kieler Geologen Professor Hartmut Heinrich, wurden sie später von dem US-Geochemiker Wally Broecker offiziell als Heinrich-Lagen benannt – ein stehender Begriff in der Paläozeanographie.

Die Heinrich-Lagen wurden im gesamten Nordatlantik nachgewiesen, vor Island bis weit in den Süden entlang der Linie New York bis Nordafrika. Solch grober Gesteinsschutt konnte nur durch Eisberge so weit vom Ursprungsort in der Hudson Bay transportiert worden sein.

„Die eigentliche Bedeutung dieser Heinrich-Ereignisse liegt aber in der Tatsache, dass mit den Abschmelzphasen und Eisbergen große Mengen Frischwasser in den Nordatlantik verbracht wurden“, sagt Lars Max, Paläozeanograph vom MARUM – Zentrum für Marine Umweltwissenschaften der Universität Bremen und Erstautor der Studie. Darin ordnet er und seine Co-Autor:innen die Zusammenhänge von Heinrich-Lagen, Frischwasserzufuhr und Veränderungen der nordatlantischen Umwälzzirkulation neu. Eine so genannte dünne Frischwasserlinse, die Millionen von Kubikkilometer Volumen während der Heinrich-Ereignisse bedeckt hat, gilt bislang als Ursache dafür, dass die nordatlantische Umwälzzirkulation (Atlantic Meridonial Overturning Circulation – kurz AMOC) gestört wurde, beziehungsweise ganz zum Stillstand kam, verbunden mit teils tiefgreifenden regionalen und globalen klimatischen Folgeerscheinungen. Die AMOC ist Teil des globalen Förderbands von Ozeanströmungen, die durch Temperatur und Salzgehalt angetrieben wird und eine wesentliche Rolle im Klimasystem spielt.

„Ursprünglich wurden interne Instabilitäten des Eisschildes für dessen Zerfall verantwortlich gemacht. Unsere Studie liefert dagegen Belege, dass Veränderungen im Ozean destabilisierend auf die Eisschilde des nordamerikanischen Kontinents wirkten“, so Lars Max. Die Untersuchung eines Sedimentkernes, der am Ausgang der Labradorsee im Nordatlantik mit dem Forschungsschiff MARIA S. MERIAN gewonnen wurde, liefere den ersten soliden Beweis für eine wiederholte, massive Ansammlung von Ozeanwärme in tieferen Schichten des subpolaren Nordatlantik. Sie hat das Schmelzen der polaren Eisschelfe von unten her ermöglicht.

„Tatsächlich können wir mit spurenelement- und isotopenanalytischen Methoden Temperatur- und Salzgehaltserhöhungen in etwa 150 Meter Wassertiefe rekonstruieren, die zeitlich gesehen den Heinrich-Ereignissen stets systematisch vorauseilen, und mit Zeiten einer bereits geschwächten atlantischen Umwälzzirkulation korrespondieren“, erklärt Dirk Nürnberg vom GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, der die Laboranalytik verantwortet.

Das spreche dafür, dass Ozeanzirkulationsänderungen diese Eisschildinstabilitäten ausgelöst haben. Eine kontinuierliche Erwärmung des Ozeans in dieser Wassertiefe ist kritisch für die Destabilisierung der Eisschelfe von unten, und führte letztendlich zu einem beschleunigten Eisbergabfluss – den Heinrich-Ereignissen.

Die Erkenntnisse zu den Prozessen aus der Erdgeschichte helfen auch, Veränderungen besser abschätzen zu können, die im Zuge der Klimaerwärmung zu erwarten sein könnten. „Sollte sich die Umwälzzirkulation in Zukunft aufgrund der menschgemachten Klimaveränderung abschwächen“, gibt Christiano Chiessi von der Universität São Paulo in Brasilien zu bedenken, „würden wir eine beschleunigte Erwärmung des tieferen subpolaren Nordatlantiks erwarten, die sich negativ sowohl auf die Stabilität der heutigen arktischen Gletscher als auch den Süßwasserhaushalt des Nordatlantiks auswirken könnte.“

Der aktuelle Sachstandsbericht des Weltklimarates (Intergovernmental Panel on Climate Change – IPCC, 2021) kommt zu dem Schluss, dass es mit einer fortschreitenden Klimaerwärmung zu einer Abschwächung der Umwälzzirkulation im Atlantischen Ozean innerhalb dieses Jahrhunderts kommen könnte. Eine stärkere Erwärmung des tieferen subpolaren Nordatlantiks und ein verstärktes Abschmelzen arktischer Gletschermassen könnten als mögliche Folgen den globalen Anstieg des Meeresspiegels zusätzlich beschleunigen. Es sei jedoch zu erwarten, so Lars Max, dass die Stabilität des Antarktischen Eisschildes eine weit erheblichere Rolle für den Verlauf des globalen Meeresspiegelanstieges spielen wird. Weitere Studien seien dringend erforderlich, um besser abschätzen zu können, inwieweit sich eine künftige Verlangsamung der Umwälzzirkulation und eine mögliche Erwärmung des tieferen Ozeans auf die zukünftige Stabilität des antarktischen Eisschildes auswirken könnte.

Wissenschaftliche Ansprechpartner:

Dr. Lars Max
MARUM – Zentrum für Marine Umweltwissenschaften
Universität Bremen
E-Mail: lmax@marum.de

Originalpublikation:

https://www.nature.com/articles/s41467-022-31754-x

Weitere Informationen:

https://www.marum.de/Entdecken/Waermestau-fuehrt-zu-Heinrichereignissen.html

Media Contact

Jana Nitsch Pressestelle
MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

Alle Nachrichten aus der Kategorie: Ökologie Umwelt- Naturschutz

Dieser Themenkomplex befasst sich primär mit den Wechselbeziehungen zwischen Organismen und den auf sie wirkenden Umweltfaktoren, aber auch im weiteren Sinn zwischen einzelnen unbelebten Umweltfaktoren.

Der innovations report bietet Ihnen interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Klimaschutz, Landschaftsschutzgebiete, Ökosysteme, Naturparks sowie zu Untersuchungen der Leistungsfähigkeit des Naturhaushaltes.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…