Aerosolneubildung in der Atmosphäre im Labor nachgestellt
Es ist daher wahrscheinlich, dass die Partikelneubildung durch Nukleation in der Atmosphäre eine Schlüsselrolle bei der Klimaentwicklung spielt. Welche Moleküle an diesem Prozess teilnehmen ist bisher noch unbekannt.
Einem internationalen Forschungsteam mit Beteiligung von Aerosolphysikern der Universität Wien um Paul Wagner ist es nun erstmals gelungen, die atmosphärischen Aerosolneubildungsraten im Rahmen des CLOUD-Experiments am CERN-Teilchenbeschleuniger zu reproduzieren.
Das CLOUD-Experiment beschäftigt sich mit einem der schwierigsten offenen Probleme der Atmosphärenphysik – der Erklärung, wie Aerosolpartikel in der Atmosphäre entstehen und damit das Klima beeinflussen. Eine Neubildung von Partikeln kann durch Zusammenlagerung von Dampfmolekülen zu Molekülclustern in der Atmosphäre erfolgen. Diese Nukleation setzt eine hinreichende Stabilität der Molekülcluster voraus. Die CLOUD-Untersuchungen erlauben die Bestimmung von Partikelentstehungsraten unter verschiedenen experimentellen Bedingungen und damit eine detaillierte Untersuchung des Nukleationsvorgangs.
Welche Prozesse wurden in CLOUD untersucht?
In CLOUD beobachteten die ForscherInnen die Bildung neuer atmosphärischer Partikel in einer speziell konstruierten Messkammer unter extrem präzise kontrollierter Temperatur, Feuchtigkeit und Konzentration kondensierender Dämpfe. „Wir haben die Entstehung von Partikeln aus Schwefelsäuredampf und winzigen Konzentrationen von Dimethylamin beobachtet“, erklärt Paul Wagner von der Fakultät für Physik. Amine sind atmosphärische Dämpfe, die hauptsächlich durch menschliche Aktivitäten (vor allem in der Viehzucht) entstehen, aber auch von den Ozeanen und vom Erdboden emittiert werden. „Aminmoleküle sind dafür bekannt, dass sie starke chemische Bindungen mit Schwefelsäuremolekülen bilden. Ihre Anwesenheit könnte erklären, weshalb Nukleation sehr häufig in der bodennahen Atmosphäre beobachtet wird“, so der Forscher.
Besonderheiten des CLOUD-Experiments
In der CLOUD-Kammer ist es möglich, wesentlich geringere Werte von Verunreinigungskonzentrationen zu erzielen als bei allen anderen bisher durchgeführten Experimenten. Dadurch sind wohldefinierte Experimente möglich und Komplikationen durch den Einfluss störender Gaskomponenten können vermieden werden. Mit hochempfindlichen Messinstrumenten werden die extrem niedrigen Dampfkonzentrationen sowie die molekulare Zusammensetzung der neugebildeten Molekülcluster bestimmt. Das CLOUD-Messsystem ermöglicht unter Verwendung eines CERN-Pionenstrahls auch die Messung einer Verstärkung der Nukleation durch kosmische Strahlung. Mit Hilfe eines internen elektrischen Feldes kann andererseits jeglicher Einfluss von Ionisation vollständig unterdrückt werden.
Was wurde durch CLOUD entdeckt?
„Unsere Experimente haben gezeigt, dass Amine bei Konzentrationen von nur einigen Molekülen pro 1012 Luftmoleküle (ppt) zusammen mit Schwefelsäuremolekülen äußerst stabile Aerosolpartikel bilden“, so Wagner. Die Entstehungsraten sind ähnlich denen in der bodennahen Atmosphäre. „Es ist erstmals gelungen, die Entstehungsraten atmosphärischer Aerosolpartikel zu reproduzieren, dabei konnte auch die molekulare Zusammensetzung der Cluster präzise bestimmt werden“, freut sich der Aerosolphysiker der Universität Wien. Die sehr detaillierten Messergebnisse konnten mit Hilfe quantenchemischer Berechnungen des molekularen Clusterbildungsvorganges erklärt werden. Somit erzielten die ForscherInnen ein grundlegendes Verständnis des Nukleationsprozesses auf molekularem Niveau.
Folgerungen für unser Verständnis der Klimaentwicklung
„Die Resultate deuten darauf hin, dass natürliche und anthropogene, also durch menschliche Aktivitäten hervorgerufene Quellen von Aminen das Klima beeinflussen könnten“, erklärt Wagner. Es ist zu erwarten, dass anthropogene Amin-Emissionen in Zukunft ansteigen werden, insbesondere weil sich Amin-Gaswäsche voraussichtlich zu einer dominanten Technologie für die CO2-Abscheidung bei Kraftwerken mit fossilen Brennstoffen entwickeln wird. „Eine Ausbreitung von Aminen in nicht verunreinigte Gebiete könnte zu einer Erzeugung neuer Partikel in der Atmosphäre führen und zum kühlenden Einfluss von Partikeln auf das Klima beitragen“ betont Wagner. Die ForscherInnen haben auch gezeigt, dass die Entstehungsrate von Amin-Schwefelsäure Partikeln in der Atmosphäre kaum durch Ionisation auf Grund kosmischer Strahlung beeinflusst wird. Bei Nukleation von atmosphärischen Schwefelsäure Partikeln mit anderen Dämpfen könnte der Einfluss der kosmischen Strahlung unterschiedlich sein.
Publikation in „Nature“
Almeida et al.: Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere.
Advance Online Publication in Nature, Oktober 2013.
DOI.10.1038/nature12663
Wissenschaftlicher Kontakt
Ao. Univ.-Prof. Dr. Dr. h.c. Paul E. Wagner
Aerosolphysik und Umweltphysik
Fakultät für Physik
Universität Wien
1090 Wien, Boltzmanngasse 5
T +43-1-4277-511 74
M +43-664-60277-511 74
paul.wagner@univie.ac.at
Rückfragehinweis
Mag. Alexandra Frey
Pressebüro der Universität Wien
Forschung und Lehre
1010 Wien, Universitätsring 1
T +43-1-4277-175 33
M +43-664-602 77-175 3
alexandra.frey@univie.ac.at
Media Contact
Weitere Informationen:
http://www.univie.ac.atAlle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen
Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…
Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen
Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…
Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität
HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…