Aktive Mikropartikel für die Künstliche Intelligenz nutzen

Schema des kolloidalen Reservoir Computers: Polymer- und Gold-dekorierte Partikel, die durch einen Laser kontrolliert werden und Berechnungen ausführen.
(c) Frank Cichos / Universität Leipzig

Künstliche Intelligenz mit neuronalen Netzen führt Berechnungen digital mithilfe von mikroelektronischen Chips durch. Physiker der Universität Leipzig haben nun eine Form des neuronalen Netzes realisiert, das nicht mit Strom, sondern mit sogenannten aktiven kolloidalen Teilchen arbeitet. In ihrer Veröffentlichung dazu in der renommierten Zeitschrift „Nature Communications“ geht es darum, diese Mikropartikel als physikalisches System für die Künstliche Intelligenz und die Vorhersage von Zeitreihen zu benutzen.

Prof. Dr. Frank Cichos
Prof. Dr. Frank Cichos. Foto: Swen Reichhold / Universität Leipzig

„Unser neuronales Netzwerk gehört in den Bereich des Physical Reservoir Computing, in dem die Dynamik physikalischer Prozesse, wie Wasseroberflächen, Bakterien oder Tentakelmodelle von Kraken zur Berechnung herangezogen werden“, erläutert Prof. Dr. Frank Cichos, dessen Arbeitsgruppe das Netzwerk mit Unterstützung von ScaDS.AI entwickelt hat. Als eines von fünf neuen KI-Zentren in Deutschland wird das Forschungszentrum mit Standorten in Leipzig und Dresden seit 2019 im Rahmen der KI-Strategie des Bundes gefördert und durch das Bundesministerium für Bildung und Forschung sowie den Freistaat Sachsen unterstützt.

„Bei unserer Realisierung verwenden wir synthetische, selbstangetriebene Partikel, die nur wenige Mikrometer groß sind“, führt Cichos aus. „Wir zeigen, dass diese für Berechnungen genutzt werden können und stellen gleichzeitig eine Methode vor, die den Einfluss von störenden Effekten wie dem Rauschen in der Bewegung der kolloidalen Teilchen unterdrückt.“ Kolloidale Teilchen sind Partikel, die in ihrem Dispersionsmedium (Feststoff, Gas oder Flüssigkeit) fein verteilt sind.

Für ihre Experimente haben die Physiker kleine Einheiten aus Plastik- und Gold-Nanopartikeln entwickelt, bei denen ein Partikel angetrieben durch einen Laser um ein anderes Partikel rotiert. Diese Einheiten haben bestimmte physikalische Eigenschaften, die sie für das Reservoir Computing interessant machen. „Jede dieser Einheiten kann Informationen verarbeiten, und viele Einheiten bilden das sogenannte Reservoir. Wir verändern die Rotationsbewegung der Partikel im Reservoir durch ein Eingangssignal. Die daraus resultierende Drehung enthält das Ergebnis einer Berechnung“, erläutert Dr. Xiangzun Wang. „Um eine bestimmte Berechnung durchzuführen, muss das System trainiert werden, wie viele neuronale Netzwerke.“

Das störende Rauschen hat die Arbeitsgruppe besonders beschäftigt. „Da unser System extrem kleine Partikel in Wasser enthält, ist das Reservoir starkem Rauschen ausgesetzt, ähnlich dem Rauschen, dem alle Moleküle in einem Gehirn unterliegen“, berichtet Professor Cichos. „Dieses Rauschen, die Brownsche Bewegung, stört die Funktion des Reservoir-Computers stark und erfordert in der Regel ein sehr großes Reservoir, um Abhilfe zu schaffen. In unserer Arbeit haben wir herausgefunden, dass die Nutzung vergangener Zustände des Reservoirs die Computerleistung verbessern kann, sodass kleinere Reservoirs für bestimmte Berechnungen unter verrauschten Bedingungen verwendet werden können.“

Somit habe man nicht nur einen Beitrag geleistet im Feld der Informationsverarbeitung mit aktiver Materie, sondern zugleich eine Methode entwickelt, die mittels Rauschminderung für eine Optimierung des Reservoir Computing sorgen könne.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Frank Cichos
Universität Leipzig
Peter-Debye-Institut für Physik der weichen Materie
Tel.: 0341 97 32571
E-Mail: cichos@physik.uni-leipzig.de
Internet: http://www.uni-leipzig.de/~mona

Originalpublikation:

“Harnessing synthetic active particles for physical reservoir computing”, https://www.nature.com/articles/s41467-024-44856-5

https://www.uni-leipzig.de/newsdetail/artikel/aktive-mikropartikel-fuer-die-kuenstliche-intelligenz-nutzen-2024-01-29

Media Contact

Dipl.-Journ. Carsten Heckmann Stabsstelle Universitätskommunikation / Medienredaktion
Universität Leipzig

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Die Lichtmodulation der Zukunft

Fraunhofer IPMS präsentiert seine photonischen Systeme auf der Photonix Japan. Mit seinen Flächenlichtmodulatoren bietet das Fraunhofer IPMS photonische Systeme inklusive Ansteuerelektronik und Software an, die eine exakte Steuerung, hohe Modulationsfrequenzen…

Effektives Energiekonzept für innovative Forschung

Max-Planck-Institute in Golm treiben nachhaltige Energiewende voran. Der Max-Planck-Campus in Golm setzt auf Nachhaltigkeit und autarke Energieversorgung. Mit einer Kombination aus Stromsparmaßnahmen und dem Ausbau erneuerbarer Energien streben die dort…

ZukunftsMissionBau – bezahlbar.nachhaltig.sicher

Sonderschau der Fraunhofer-Allianz Bau auf der Messe BAU 2025. Unter dem Motto »ZukunftsMissionBau – bezahlbar.nachhaltig.sicher« präsentiert die Fraunhofer-Allianz Bau vom 13. bis 17. Januar 2025 im Rahmen ihrer Sonderschau auf…

Partner & Förderer