Atom blitzschnell angetippt

The tip of an ultrafast scanning tunnelling microscope hovers over a molecular switch. Ultrafast atomic forces induce vigorous motion of a select atom of the molecule to control its reactivity on ultrafast time scales.

© Brad Baxley (parttowhole.com)
Use only for reporting on this press release

Wissenschaftler*innen aus Regensburg und Zürich haben einen faszinierenden Weg gefunden, ein Atom mit kontrollierten Kräften so schnell anzustoßen, dass sie damit die Bewegung eines einzelnen Moleküls in weniger als einer billionstel Sekunde choreografieren können. Als Grundlage dient die extrem scharfe Nadel eines weltweit einzigartigen ultraschnellen Mikroskops. Sie kann Moleküle vorsichtig abtasten, ähnlich wie bei einem Plattenspieler. Die Physiker der Universität Regensburg verwandelten diese Nadel in eine ultraschnelle „atomare Hand“, indem sie Lichtblitze darauf strahlten. Damit lassen sich Moleküle bewegen – und neue Technologien inspirieren.

Atome und Moleküle sind die Bestandteile praktisch aller Materie, die uns umgibt. Sie interagieren miteinander gemäß den Regeln der Quantenmechanik und bilden komplexe Systeme, die eine unendliche Vielfalt von Funktionen erfüllen. Um chemische Reaktionen, biologische Vorgänge einer Zelle oder neuartige Sonnenenergiegewinnung zu untersuchen, würden Wissenschaftler*innen gerne einzelne Moleküle nicht nur beobachten, sondern diese sogar gezielt steuern.

Am intuitivsten lernen Menschen, wie sich Objekte entwickeln, wenn sie haptisch Einfluss nehmen können: etwas anstoßen, drücken, schubsen oder ziehen. Naturgemäß sind wir dabei an makroskopische Objekte gewöhnt, die sie durch Kraftausübung direkt berühren und bewegen können. In ähnlicher Weise interagieren Atome und Moleküle über Kräfte, aber diese Kräfte sind in mehrfacher Hinsicht extrem.

Erstens treten die zwischen Atomen und Molekülen wirkenden Kräfte bei extrem kleinen Längen auf. Diese Objekte sind so klein, dass sogar eine spezielle Längenskala eingeführt wurde, um sie zu messen: 1 Ångström (1 Å = 0,000 000 000 1 m). Gleichzeitig zappeln und bewegen sich Atome und Moleküle unvorstellbar schnell; schneller als Pikosekunden (1 ps = 0,000 000 000 001 s). Um ein Molekül bei seiner Bewegung direkt zu beeinflussen, wird also ein Werkzeug zur Erzeugung ultraschneller Kräfte auf atomarer Ebene benötigt.

Vor mehr als 30 Jahren zeigten Eigler und Schweizer, dass man mit einem Rastertunnelmikroskop statische Kräfte auf einzelne Atome ausüben kann. In solch einem Mikroskop wird eine extrem scharfe Nadel verwendet, die Moleküle vorsichtig abtastet, ähnlich wie bei einem Plattenspieler. Ein Forschungsteam aus Regensburg und Zürich hat sich nun der Herausforderung gestellt, solch atomare Kräfte schnell genug zu machen, um Moleküle während ihrer Bewegung zu lenken und damit Reaktionen und Übergänge zu beeinflussen. Das Regensburger Team um Rupert Huber und Jascha Repp arbeitet mit einem weltweit einzigartigen ultraschnellen Mikroskop, welches Femtosekunden-Laserimpulse mit Rastertunnelmikroskopie kombiniert, die einzelne Moleküle sichtbar machen kann.

Weil Licht eine elektromagnetische Welle ist, kann seine oszillierende Trägerwelle als ultraschnelle Kraft wirken, wie das Team zeigte, schneller sogar als ein Schwingungszyklus des Lichtfeldes. „Wenn wir Lichtblitze auf die atomar scharfe Nadel des Mikroskops strahlen, können wir die belichtete Nadel als ultraschnelle, atomar scharfe „Hand“ verwenden und damit einzelne Atome des Moleküls anstoßen“, erklärt Dominik Peller, der Erstautor der neuen Studie.

Das Team beobachtete, dass die ultraschnellen atomaren Kräfte stark genug waren, um eine ultraschnelle Schwingung des Moleküls auszulösen. Diese Bewegung war so heftig, dass sie die Schaltwahrscheinlich-keit des Moleküls um bis zu 39% beeinflusste. Dominik Peller, zutiefst beeindruckt: „Wir konnten die Amplitude und die Richtung der Schwingung nach Belieben steuern und damit die Reaktionswahrschein-lichkeit des Moleküls auf der Femtosekundenskala modulieren“.

Darüber hinaus stellte sich heraus, dass nur dann eine Schwingungsbewegung ausgelöst wird, wenn die „atomare Hand“ ultraschnelle Kräfte auf ganz bestimmte Bereiche des Moleküls ausübt. Der Vergleich mit einer quantenmechanischen Berechnung von Nikolaj Moll in Zürich offenbarte den Grund dafür: Das Molekül hakt sich über Schlüsselatome in die Oberfläche ein. Nur wenn die Wissenschaftler*innen ultraschnelle Kräfte auf diese speziellen Atome ausüben, können sie die Schwingung des Moleküls gezielt steuern.

Diese Entdeckung ermöglicht endlich die Kontrolle über molekulare Reaktionen auf unmittelbarste Weise. Man verspricht sich, durch ultraschnelle atomare Kräfte Schlüsselprozesse in Chemie und Biologie zu verstehen und zu steuern und damit zukünftige Technologien auf der Basis einzelner Moleküle zu inspirieren. So sollen die Geheimnisse des ultraschnellen Mikrokosmos nicht nur beobachtet, sondern mit bisher unerreichter Präzision kontrolliert und nutzbar gemacht werden.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Rupert Huber, Fakultät für Physik, Universität Regensburg
Telefon +49 941 943 2070
Rupert.Huber@ur.de

Prof. Dr. Jascha Repp, Fakultät für Physik, Universität Regensburg
Telefon +49 941 943 4201
Jascha.Repp@ur.de

Originalpublikation:

Dominik Peller, Lukas Z. Kastner, Thomas Buchner, Carmen Roelcke, Florian Albrecht, Nikolaj Moll, Rupert Huber and Jascha Repp, Sub-cycle atomic-scale forces coherently control a single-molecule switch. In: Nature.
DOI: https://www.nature.com/articles/s41586-020-2620-2

Weitere Informationen:

http://www.physik.uni-regensburg.de/forschung/huber/dpeller.html
http://www.physik.uni-regensburg.de/forschung/huber/home.html
http://www.physik.uni-regensburg.de/forschung/repp/index.htm
https://www.zurich.ibm.com/

Media Contact

Christina Glaser Referat II/2 - Kommunikation & Marketing
Universität Regensburg

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spitzenforschung in der Bioprozesstechnik

Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…

Datensammler am Meeresgrund

Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…

Rotorblätter für Mega-Windkraftanlagen optimiert

Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…