Atomschicht um Atomschicht zur Supraleitung

Ein Ergebnis der Simulationen von gestapelten Graphenschichten. Das Bild zeigt die sogenannte Berry-Curvature, die das Auftreten von topologischer Supraleitung bestätigt.
(c) Areg Ghazaryan

Graphen ist ein seltsames Material. Seine Eigenschaften zu verstehen, ist sowohl für die Grundlagenwissenschaften interessant als auch für vielversprechende neue Technologien.

Ein Team von Forschenden des Institute of Science and Technology Austria (ISTA) und des Weizmann Institute of Science hat Systeme aus mehreren übereinander gestapelten Graphenschichten untersucht und herausgefunden, wie diese zu neuen Formen exotischer Supraleitung führen können.

Stellen Sie sich ein Material vor, das nur aus einer Schicht Atome besteht – weniger als ein Millionstel eines Millimeters dick. Das mag zwar fantastisch klingen, aber ein solches Material existiert: Es heißt Graphen und besteht aus Kohlenstoffatomen in einem wabenförmigen Gitter. Es wurde erstmals im Jahr 2004 hergestellt und schon bald für seine wundersamen Eigenschaften gepriesen. Jedoch arbeiten Wissenschafter:innen immer noch daran, es vollkommen zu verstehen.

Postdoc Areg Ghazaryan und Professor Maksym Serbyn vom Institute of Science and Technology Austria (ISTA) haben sich gemeinsam mit Dr. Tobias Holder und Professor Erez Berg vom Weizmann Institute of Science in Israel seit Jahren mit Graphen beschäftigt. Nun publizieren sie ihre neuesten Erkenntnisse über seine supraleitenden Eigenschaften in einer Studie in Physical Review B.

Vier Schichten von Graphen in ABCA-Anordnung. Vier Schichten aus Kohlenstoffatomen in zweidimensionalen Wabengittern, die übereinandergestapelt sind. Jede Schicht ist gegenüber der darunter liegenden nach links verschoben.
(c) ISTA

„Mehrschichtiges Graphen hat viele vielversprechende Eigenschaften, die von einer veränderbaren Bandstruktur über besondere optische Eigenschaften bis hin zu neuen Formen der Supraleitung reichen – das heißt, es kann elektrischen Strom ohne Widerstand leiten“, erklärt Ghazaryan. „In unserem theoretischen Modell setzen wir unsere Arbeit an gestapeltem Graphen fort und untersuchen, wie sich die verschiedenen Graphen-Schichten am besten übereinander anordnen lassen. Dabei fanden wir neue Möglichkeiten, um sogenannte topologische Supraleitung zu erzeugen.“ In ihrer Studie simulierten die Forscher:innen am Computer, was passiert, wenn man mehrere Lagen von Graphen in bestimmten Anordnungen übereinander stapelt.

Schönheitswettbewerb für Elektronen

„Es ist wie ein großer Schönheitswettbewerb zwischen den verschiedenen Konfigurationen von gestapelten Graphenschichten, um die beste zu finden“, fügt Serbyn hinzu. „Dabei untersuchen wir, wie sich die Elektronen, die sich in den Graphenschichten bewegen, verhalten.“ Je nachdem, wie viele Graphenschichten es sind und wie sie gegeneinander verschoben sind, erschaffen die positiv geladenen Kerne der Kohlenstoffatome im Wabengitter unterschiedliche Umgebungen für die Elektronen um sie herum. Die negativ geladenen Elektronen werden von den Kernen angezogen und von den anderen Elektronen um sie herum abgestoßen. „Wir haben damit begonnen, realistische Modelle zu untersuchen, bei denen nur ein einziges Elektron mit den Atomkernen des Graphens wechselwirkt. Als wir einen vielversprechenden Ansatz gefunden hatten, haben wir die komplizierteren Wechselwirkungen zwischen vielen Elektronen hinzugefügt“, erklärt Ghazaryan. Dabei haben die Forscher:innen bestätigt, dass die exotische Form der topologischen Supraleitung auftritt.

Feedback der Natur

Diese Art der theoretischen Forschung legt den Grundstein für künftige Experimente, bei denen die simulierten Graphen-Systeme in einem Labor hergestellt werden, um zu sehen, ob sie sich wirklich so verhalten, wie vorhergesagt. „Unsere Arbeit hilft Forscher:innen, neue Experimente zu entwerfen, ohne jede Konfiguration von Graphenschichten ausprobieren zu müssen“, ergänzt Ghazaryan. „Jetzt wird die theoretische Forschung weitergehen, während uns die Experimente Feedback aus der Natur geben werden.“

Während Graphen langsam Anwendungen in der Forschung und Technik gefunden hat – zum Beispiel als Kohlenstoff-Nanoröhren – beginnt man gerade erst, sein Potenzial als topologischer Supraleiter für Elektrizität zu verstehen. Serbyn fügt hinzu: „Wir hoffen, dass wir eines Tages in der Lage sein werden, diese Art von Material auf quantenmechanischer Ebene vollständig zu beschreiben, sowohl um unserer wissenschaftlichen Neugier zu befriedigen als auch um die vielen möglichen Anwendungen von Graphen zu realisieren.“

Projektförderung

Diese Forschung wurde vom European Research Council (ERC) im Rahmen des Grant HQMAT (Grant Agreement No. 817799), von der Israel-USA Binational Science Foundation (BSF) und durch einen Forschungszuschuss von Irving und Cherna Moskowitz unterstützt.

Über ISTA

Das Institute of Science and Technology Austria (ISTA) ist ein Forschungsinstitut mit eigenem Promotionsrecht. Es beschäftigt Professor:innen nach einem Tenure-Track-Modell, Post-Doktorand:innen und PhD-Student:innen. Die Graduate School des ISTA bietet hochqualifizierten Student:innen mit einem Bachelor- oder Masterabschluss in Biologie, Mathematik, Informatik, Physik, Chemie und verwandten Bereichen voll finanzierte Doktoratsstellen. Neben dem Bekenntnis zum Prinzip der Grundlagenforschung, die rein durch wissenschaftliche Neugier getrieben wird, setzt ISTA darauf, wissenschaftliche Erkenntnisse durch technologischen Transfer und Wissensvermittlung in die Gesellschaft zu tragen. Der aktuelle Präsident ist Martin Hetzer, ein renommierter Molekularbiologe und vormals Senior Vice President am The Salk Institute for Biological Studies in Kalifornien, USA. www.ista.ac.at

Wissenschaftliche Ansprechpartner:

Florian Schlederer
Florian.Schlederer@ista.ac.at
+43 664 8832 6174

Originalpublikation:

A. Ghazaryan, T. Holder, E. Berg, and M. Serbyn. 2023. Multilayer graphenes as a platform for interaction-driven physics and topological superconductivity. Physical Review B.

Weitere Informationen:

https://journals.aps.org/prb/accepted/9807dOb0Ldc15e42d0b33250eab0ff046e20fc3fa

Media Contact

Florian Schlederer Communications and Events
Institute of Science and Technology Austria

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Lange angestrebte Messung des exotischen Betazerfalls in Thallium

… hilft bei Zeitskalenbestimmung der Sonnenentstehung. Wie lange hat eigentlich die Bildung unserer Sonne in ihrer stellaren Kinderstube gedauert? Eine internationale Kollaboration von Wissenschaftler*innen ist einer Antwort nun nähergekommen. Ihnen…

Soft Robotics: Keramik mit Feingefühl

Roboter, die Berührungen spüren und Temperaturunterschiede wahrnehmen? Ein unerwartetes Material macht das möglich. Im Empa-Labor für Hochleistungskeramik entwickeln Forschende weiche und intelligente Sensormaterialien auf der Basis von Keramik-Partikeln. Beim Wort…

Klimawandel bedroht wichtige Planktongruppen im Meer

Erwärmung und Versauerung der Ozeane stören die marinen Ökosysteme. Planktische Foraminiferen sind winzige Meeresorganismen und von zentraler Bedeutung für den Kohlenstoffkreislauf der Ozeane. Eine aktuelle Studie des Forschungszentrums CEREGE in…