Auf dem Weg zu zellartigen Materialien
Physiker entschlüsseln Zusammenspiel von molekularen Maschinen in metallorganischen Gerüstverbindungen.
Physikern der Westfälischen Wilhelms-Universität (WWU) Münster ist es erstmals gelungen, das dynamische Zusammenspiel einer Klasse von künstlichen molekularen Maschinen – den sogenannten molekularen Shuttles – mithilfe von molekular-dynamischen Simulationen aufzudecken. Die Studie ist in der Zeitschrift „Science Advances“ erschienen.
Molekulare Maschinen steuern eine Vielzahl grundlegender Prozesse in der Natur. Eingebettet in eine zelluläre Umgebung, spielen sie eine zentrale Rolle beim intra- und interzellulären Transport von Molekülen sowie bei der Muskelkontraktion von Menschen und Tieren. Für die Funktion des gesamten Organismus ist meist eine wohldefinierte Orientierung und Anordnung der molekularen Maschinen essenziell. Zum Beispiel ermöglicht die spezifische Einbettung von Motorproteinen, welche eine Klasse von biomolekularen Maschinen bilden, ein dynamisches Zusammenspiel der unzähligen Proteine. Dadurch wird die Bewegung auf molekularer Ebene verstärkt und über verschiedene Größenordnungen hinweg bis zur makroskopischen Ebene übertragen.
Inspiriert von diesen biologischen Systemen, ist die Entwicklung von zellartigen Materialien, basierend auf künstlichen molekularen Maschinen ein aktuelles Forschungsfeld. Um die molekulare Kooperativität dieser Maschinen für die Anwendung in der Materialwissenschaft oder der Medizin zu nutzen, ist ein detailliertes Verständnis sowohl der molekularen Einbettung in eine Matrix als auch der intermolekularen Wechselwirkungen entscheidend. Elena Kolodzeiski und Dr. Saeed Amirjalayer vom Physikalischen Institut der Westfälischen Wilhelms-Universität (WWU) Münster ist es erstmals gelungen, das dynamische Zusammenspiel einer Klasse von künstlichen molekularen Maschinen – den sogenannten molekularen Shuttles – mithilfe von molekular-dynamischen Simulationen aufzudecken. Die Studie ist jetzt in der Zeitschrift „Science Advances“ erschienen.
Molekulare Shuttles sind aus hantelförmigen und ringförmigen Molekülen aufgebaut, die durch mechanische Bindungen miteinander verknüpft sind. „Diese mechanische Verknüpfung auf molekularer Ebene führt dazu, dass sich der Ring entlang der Achse von einer Seite auf die andere bewegen kann. Diese gezielte Pendelbewegung wurde bereits genutzt, um molekulare Maschinen zu entwickeln“, erklärt Studienleiter Saeed Amirjalayer. Basierend hierauf arbeiten Wissenschaftler weltweit an einer gezielten Nutzung dieser molekularen Maschinen in Funktionsmaterialien. Metallorganische Gerüstverbindungen, welche modular aus organischen und anorganischen Bausteinen aufgebaut sind, erweisen sich als eine vielversprechende Matrix, um diese mechanisch verzahnten Moleküle in zellartigen Strukturen einzubetten. Obwohl in den vergangenen Jahren eine Reihe dieser Systeme synthetisiert wurde, fehlt meist ein grundlegendes Verständnis der dynamischen Prozesse in diesen Materialien.
„Unsere Studie liefert einen detaillierten Einblick darin, wie die eingebetteten Maschinen funktionieren und zusammenspielen. Gleichzeitig konnten wir Parameter ableiten, die es ermöglichen, die Bewegungsart der molekularen Shuttles innerhalb der metallorganischen Gerüstverbindungen zu variieren“, erklärt Erstautorin Elena Kolodzeiski. Die gezielte Steuerung der Dynamik biete vielsprechende Möglichkeiten, um die Transporteigenschaften von Molekülen in Membranen zu beeinflussen oder katalytische Prozesse abzustimmen. Die Forscher hoffen, dass ihre Simulationen die Grundlage für neuartige Materialien in der katalytischen und medizinischen Anwendung bilden.
Finanzierung
Die Arbeit wurde von der Deutschen Forschungsgemeinschaft finanziell unterstützt.
Wissenschaftliche Ansprechpartner:
Dr. Saeed Amirjalayer
Westfälische Wilhelms-Universität Münster
Center for Nanotechnology (CeNTech)
E-Mail: s.amirjalayer@wwu.de
Telefon: +49 (0)251 83 39043
Originalpublikation:
Kolodzeiski, E. & Amirjalayer, S. (2022): Dynamic network of intermolecular interactions in metal-organic frameworks functionalized by molecular machines. Sci. Adv. DOI: 10.1126/ sciadv.abn4426
Weitere Informationen:
https://www.science.org/doi/10.1126/sciadv.abn4426 Originalpublikation in Science Advances
https://www.uni-muenster.de/Physik.FT/ Institut für Festkörpertheorie der WWU Münster
https://www.samirjalayer.de/ Stimuli-Responsive Nanomaterials Group
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Spitzenforschung in der Bioprozesstechnik
Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…
Datensammler am Meeresgrund
Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…
Rotorblätter für Mega-Windkraftanlagen optimiert
Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…