Auf den Quantenpunkt gebracht: ultrahochauflösendes 3D-Mikroskopieverfahren für elektrische Felder
Erste Ergebnisse der als Raster-Quantenpunkt-Mikroskopie bezeichneten Technik sind in der aktuellen Ausgabe der Fachzeitschrift Physical Review Letters veröffentlicht. Die Publikation wurde als „Editor's suggestion“ ausgewählt und in einem Viewpoint-Artikel im Fachportal Physics kommentiert.
Das Verfahren ist für vielfältige wissenschaftliche Bereiche relevant, beispielsweise für die Erforschung von Biomolekülen und Halbleitermaterialien. „Mit unserer Methode lassen sich elektrische Felder in der Nähe einer Probenoberfläche erstmals mit atomarer Genauigkeit im Sub-Nanometer-Bereich quantitativ erfassen“, erläutert Dr. Ruslan Temirov vom Forschungszentrum Jülich. Solche elektrischen Felder umgeben alle Nanostrukturen wie eine Art Aura. Ihre Eigenschaften geben beispielsweise Aufschluss über die Verteilung von Ladungen in Atomen oder Molekülen.
Für die Messung nutzten die Jülicher Forscher ein Rasterkraftmikroskop. Dessen Funktionsweise ähnelt dem eines Plattenspielers: die Spitze fährt über die Probe und erstellt so Stück für Stück eine zusammenhängende Darstellung der Oberfläche. Um elektrische Felder zu erfassen, verwendeten Wissenschaftler bislang den ganzen vorderen Teil der Abtast-Spitze als sogenannte Kelvin-Sonde. Doch das ungleiche Größenverhältnis von Spitze und Probe hat ungünstige Folgen für das Auflösungsvermögen: Wäre ein einzelnes Atom so groß wie ein Stecknadelkopf, so wäre die Mikroskop-Spitze so groß wie das Empire State Building.
Einzelnes Molekül als Sensor
Um die Auflösung und Empfindlichkeit zu verbessern, haben die Jülicher Wissenschaftler ein einzelnes Molekül als Quantenpunkt an die Spitze des Mikroskops geheftet. Quantenpunkte sind winzige Strukturen im Bereich weniger Nanometer, die aufgrund von Quanteneffekten nur ganz bestimmte, diskrete Zustände annehmen können, vergleichbar mit den Energieniveaus eines einzelnen Atoms.
Die Funktion des Quantenpunkts an der Mikroskopspitze gleicht der einer Balkenwaage, die sich mal zur einen, mal zur anderen Seite bewegt. Ein Ausschlag in die eine oder andere Richtung entspricht dabei der An- oder Abwesenheit eines zusätzlichen Elektrons, das entweder von der Spitze auf das Molekül herüber springt, oder eben nicht. Die „Molekül-Waage“ vergleicht auf diese Weise keine Gewichte, sondern zwei elektrische Felder, die auf das bewegliche Elektron des molekularen Sensors einwirken: auf der einen Seite das Feld einer Nanostruktur, das gemessen werden soll, und auf der anderen ein weiteres Feld, das die – unter Spannung stehende – Spitze des Mikroskops umgibt.
„Die Spannung an der Spitze wird jeweils so lange variiert, bis sich ein Gleichgewicht einstellt. Kennt man die angelegte Spannung, kennt man auch das Feld der Probe an der Position des Moleküls“, erklärt Dr. Christian Wagner, Wissenschaftler in Temirovs Nachwuchsgruppe am Jülicher Peter Grünberg Institut (PGI-3). „Weil die gesamte ‚Molekül-Waage‘ so klein ist und aus nur 38 Atomen besteht, können wir ein sehr scharfes Bild vom elektrischen Feld der Probe machen; ähnlich einer Kamera mit besonders kleinen Pixeln.“
Universell einsetzbar
Die zum Patent angemeldete Methode eignet sich insbesondere zur Vermessung rauer Oberflächen, beispielsweise von Halbleiterstrukturen für elektronische Bauelemente oder stark gefalteter Biomoleküle. „Bei der Raster-Quantenpunkt-Mikroskopie kann, anders als bei vielen anderen Formen der Rastersondenmikroskopie, auch über eine Distanz von mehreren Nanometern gemessen werden. In der Nanowelt ist das eine ziemlich weite Entfernung“, berichtet Christian Wagner. Bislang ist die in Jülich entwickelte Methode allerdings auf Anwendungen im Hochvakuum und auf tiefe Temperaturen beschränkt: Voraussetzungen, die notwendig sind, um das einzelne Molekül kontrolliert an die Spitze des Mikroskops zu koppeln.
„Im Prinzip sind aber auch andere Ausführungen denkbar, die bei Raumtemperatur funktionieren“, schätzt der Jülicher Physiker. Anstelle eines Sensor-Moleküls könnten nämlich auch andere Formen von Quantenpunkten zum Einsatz kommen, die sich mit Halbleitermaterialien realisieren lassen: beispielsweise Quantenpunkte aus Nanokristallen, wie sie in der Grundlagenforschung bereits verwendet werden.
Originalpublikation:
C. Wagner, M. F. B. Green, P. Leinen, T. Deilmann, P. Krüger, M. Rohlfing, R. Temirov, and F. S. Tautz „Scanning Quantum Dot Microscopy“, Phys. Rev. Lett. 115, 026101 (2015), published online 6 July 2015, DOI: 10.1103/PhysRevLett.115.026101
Article: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.026101#fulltext
Weitere Informationen:
Viewpoint: Pushing the Potential of Probe Microscopy, July 6, 2015 – Physics 8, 63: http://physics.aps.org/articles/v8/63
Nachwuchsgruppe „Complex Transport Regimes in Low Temperature Scanning Tunnelling Microscopy”: http://www.fz-juelich.de/pgi/pgi-3/EN/UeberUns/Organisation/Gruppe3/gruppe3_node…
Peter Grünberg Institut, Functional Nanostructures at Surfaces (PGI-3): http://www.fz-juelich.de/pgi/pgi-3/EN/Home/home_node.html
Ansprechpartner:
Dr. Ruslan Temirov, Leiter der Nachwuchsgruppe „Complex Transport Regimes in Low Temperature Scanning Tunnelling Microscopy” am Peter Grünberg Institut, Functional Nanostructures at Surfaces (PGI-3)
Tel. +49 2461 61-3462, -4469
r.temirov@fz-juelich.de
Dr. Christian Wagner, Nachwuchsgruppe „Complex Transport Regimes in Low Temperature Scanning Tunnelling Microscopy” am Peter Grünberg Institut, Functional Nanostructures at Surfaces (PGI-3)
Tel. +49 2461 61-3538
c.wagner@fz-juelich.de
Pressekontakt:
Tobias Schlößer, Unternehmenskommunikation
Tel. +49 2461 61-4771
E-Mail: t.schloesser@fz-juelich.de
Media Contact
Weitere Informationen:
http://www.fz-juelich.deAlle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen
Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…
Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität
HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…
ASXL1-Mutation: Der verborgene Auslöser hinter Blutkrebs und Entzündungen
Wissenschaftler zeigen, wie ein mutiertes Gen rote und weiße Blutkörperchen schädigt. LA JOLLA, CA – Wissenschaftler am La Jolla Institute for Immunology (LJI) haben herausgefunden, wie ein mutiertes Gen eine…