Beobachtung des Nicht-Beobachtbaren

Ultraviolette Photonen schießen Elektronen aus einer Molekülschicht (grün) heraus, die auf einer Silberoberfläche adsorbiert ist. Die Messung der Energie- und Winkelverteilung der emittierten Elektronen liefert nach Anwendung eines iterativen mathematischen Verfahrens, die Elektronenorbitale des Moleküls (rot / blau).<br><br>Quelle: Daniel Lüftner, KFU Graz <br>

Seit Jahrzehnten suchen Physiker und Chemiker einen Weg, die Wellenfunktion von Elektronen in Atomen, Molekülen und Festkörpern zu messen. Die Welleneigenschaften der Elektronen bestimmen das Verhalten aller Materie, ließen sich bisher aber nur in der Theorie vollständig erfassen.

Wissenschaftlern aus Graz und Jülich ist es nun erstmals gelungen, diese nicht direkt zugängliche Größe für komplexe Moleküle im Experiment vollständig zu ermitteln. Die Ergebnisse werden in der aktuellen Ausgabe der renommierten Fachzeitschrift Proceedings of the National Academy of Sciences (PNAS) veröffentlicht.

In der Physik werden Elektronen nicht nur als Teilchen, sondern auch als Wellen beschrieben. In der Quantentheorie wird die Wellennatur mathematisch durch die räumliche Wellenfunktion, in Atomen und Molekülen auch Orbitale genannt, erfasst.

„Orbitale beinhalten Informationen über die räumliche Verteilung der Elektronen bei einer bestimmten Energie. Sind sie bekannt, lassen sich alle relevanten Informationen des Systems ableiten“, erklärt Ass.-Prof. Peter Puschnig vom Institut für Physik der Karl-Franzens-Universität Graz.

Die Wellenfunktion selbst lässt sich jedoch nicht direkt beobachten. Im Experiment geht eine wichtige Information verloren, die Phase. Doch mit einem mathematischen Trick konnten die Wissenschaftler diese verborgene Größe wiederherstellen und so die Orbitale einer Reihe von organischen Molekülen rekonstruieren.

„Bisher ging man davon aus, dass die Messergebnisse der Photoelektronenspektroskopie, auf denen unser Verfahren beruht, für Moleküle auf Oberflächen durch Beugungsmuster und andere störende Effekte zu stark verzerrt werden. Diese Arbeit zeigt aber, dass die vollständige Rekonstruktion der Wellenfunktion überraschenderweise ganz einfach ist“, erläutert Prof. Stefan Tautz vom Peter Grünberg Institut des Forschungszentrums Jülich. Seit einigen Jahren kooperiert er mit Puschnig und führt mit dessen Grazer Kollegen in der Arbeitsgruppe von Prof. Michael Ramsey Experimente am Helmholtz Zentrum Berlin durch.

Für ihre Untersuchungen schossen die Wissenschaftler mithilfe von ultraviolettem Licht Elektronen förmlich aus den Molekülen heraus. Die anschließende Vermessung der Energie- und Winkelverteilung der Elektronen gab Aufschluss über deren räumliche Verteilung im Molekül. Um die fehlende Phaseninformation zu rekonstruieren, nutzten die Physiker eine mathematische Eigenschaft der sogenannten Fourier-Transformation: Wenn die räumliche Ausdehnung der Wellenfunktion bekannt ist, dann lässt sich durch eine Serie von abwechselnden Fourier-Transformationen und -Rücktransformation die Phase schrittweise rekonstruieren. Auf diese Weise konnte das österreichisch-deutsche Team die räumliche Verteilung der Elektronen in fünf Molekülorbitalen entschlüsseln.

Originalpublikation:

Imaging the wave functions of adsorbed molecules. Daniel Lüftner, Thomas Ules, Eva Maria Reinisch, Georg Koller, Serguei Soubatch, F. Stefan Tautz, Michael G. Ramsey, Peter Puschnig. Proceedings of the National Academy of Sciences (PNAS, 2013, published online www.pnas.org/cgi/doi/10.1073/pnas.1315716110)

Weitere Informationen:

Pressemitteilung der Universität Graz:
http://on.uni-graz.at/de/forschen/article/vermessung-von-molekuelen/

Peter Grünberg Institut, Bereich Funktionale Nanostrukturen an Oberflächen (PGI-3):

http://www.fz-juelich.de/pgi/pgi-3/EN/Home/home_node.html

Ansprechpartner:

Prof. Dr. Stefan Tautz
Peter Grünberg Institut, Funktionale Nanostrukturen an Oberflächen (PGI-3)
Forschungszentrum Jülich
Tel. +49 2461 61-4561
E-Mail: s.tautz@fz-juelich.de
Ass.-Prof. Dr. Peter Puschnig
Institut für Physik
Karl-Franzens-Universität Graz
Tel. +43 316 380 5230
E-Mail: peter.puschnig@uni-graz.at
Pressekontakt:
Tobias Schlößer
Unternehmenskommunikation, Forschungszentrum Jülich
Tel. +49 2461 61-4771
t.schloesser@fz-juelich.de

Media Contact

Tobias Schlößer Forschungszentrum Jülich GmbH

Weitere Informationen:

http://www.fz-juelich.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Schimpanse in einem tropischen Wald, der genetische Anpassungen zum Überleben zeigt.

Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen

Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…

RNA-bindendes Protein RbpB reguliert den Stoffwechsel der Darmmikrobiota in Bacteroides thetaiotaomicron.

Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität

HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…