Der Pico-Satellit COMPASS-1 der FH Aachen ist erfolgreich im Orbit angekommen

Vier Jahre intensive Arbeit der Studierenden am Fachbereich Luft- und Raumfahrttechnik der FH Aachen haben sich gelohnt: COMPASS-1, der erste komplett von Studierenden konstruierte Pico-Satellit Deutschlands, ist pünktlich um 5:53 Uhr Aachener Ortszeit in den Weltraum gestartet.

Dann hieß es warten, bis um 12:13 Uhr beim zweiten Überflug über Europa der erlösende erste Kontakt zur Bodenstation auf der FH-Gebäude Hohenstaufenallee hergestellt werden konnte: Der Satellit funktioniert einwandfrei und konnte bereits eine erste Meldung über seinen Temperaturstatus übermitteln! Bei seiner primären Bestimmung, dem Betrieb im Orbit, hat COMPASS-1 noch einmal gezeigt, wie gut die Arbeit der Studierenden war, die den 1000 cm3 kleinen und nur etwa 1 kg schweren Pico-Satelliten entwickelt und gebaut haben.

Zunächst hatte der Pico-Satellit das Team aus Studierenden und Professoren, das sich zu früher Stunde in den Räumen des FH-Gebäudes Hohenstaufenallee versammelt hatten, um den Start „Ihres“ Satelliten zu erleben, auf eine harte Geduldsprobe gestellt: Als COMPASS-1 – auf einer Leinwand live verfolgt von den angespannten Blicken der Studierenden, Professoren und wissenschaftlichen Mitarbeitern – pünktlich im Innern der Trägerrakete um 5:53 vom Sriharikota Space Center/Indien abhob, war die Welt noch in Ordnung.

Gemeinsam mit neun weiteren Groß- und Kleinsatelliten trug ihn die Rakete in Richtung Orbit. 13 Minuten benötigte die Trägerrakete, bis sie in 636 km Höhe den ersten der zehn Satelliten absetzen konnte. Kurz darauf folgte die Bestätigung, dass auch der zweite indische Satellit erfolgreich in den Orbit entlassen wurde. Nun sollten die acht Pico-Satelliten in einem Abstand von jeweils 20 Sekunden folgen – doch die Bestätigung, dass der erste CubeSat erfolgreiche ausgestoßen wurde, blieb aus.

Das kanadische Team, dessen Satellit ebenfalls an Bord der Trägerrakete war und das ständig den Status der Mission per Chat an die Aachener Studierenden weitergab, war ratlos. Und auch unter den FH Aachen-Studierenden steigerte sich langsam die Sorge, dass COMPASS-1 die Rakete nicht verlassen haben könnte. Als dann um 6:44 Uhr die Meldung in Aachen einging, dass die Ausstoßsequenz anscheinend nicht ordentlich verlaufen sei, war die Spannung unter den Studierenden fast greifbar.

Um 6:57 Uhr endlich, rund eine Stunde nach dem Start, erreichte sie die erste erlösende Nachricht: Eine kalifornische Bodenstation konnte erfolgreich das Signal eines der Cube-Satelliten empfangen. Doch noch stand nicht fest, ob es sich dabei um COMPASS-1 handelte oder um einen japanischen CubeSat, der auf gleicher Frequenz seine Signale zur Erde sandte. Ein paar Minuten später gab das von den Kaliforniern zur Verfügung gestellte Audio-Morsesignal dann endlich Sicherheit: COMPASS-1 funktioniert und hat erfolgreich seine endgültige sonnensynchrone Umlaufbahn in 635 km Höhe erreicht.

Durch die etwas verspätete Information zum Aussetzen des Satelliten schickte er dann beim zweiten Überflug über Europa um 12:13 Uhr ein erstes Lebenszeichen direkt zur Bodenstation auf dem Gebäude Hohenstaufenallee 6.

In den kommenden sechs Monaten werden die Studierenden von der Bodenstation im Fachbereich Luft- und Raumfahrttechnik aus sechs Mal täglich Verbindung zu ihrem Pico aufnehmen können. Der Kontakt dauert jeweils höchstens 14 Minuten, dann ist der Satellit wieder aus dem Blickfeld verschwunden. In dieser kurzen Zeitperiode wird COMPASS-1 nicht nur Daten zu seinem Gesundheitszustand – beispielsweise zu seiner Solarzellen- und Batteriespannung oder zu seiner momentanen Temperatur – an die Bodenstation senden, sondern gleichzeitig über eine spezielle Datenfrequenz ausführliche Informationen zum Verhalten der eingesetzten neuen Technologien, mit denen der Satellit bestückt ist, empfangen.

Denn COMPASS-1 dient als Testfeld für verschiedene neue Technikkomponenten, deren Haltbarkeit und Leistungsfähigkeit im Orbit untersucht werden sollen. Am Fachbereich Luft- und Raumfahrttechnik werden die Daten dann mit Unterstützung des Deutschen Zentrums für Luft- und Raumfahrt (DLR) ausgewertet und im Internet veröffentlicht. Da die Daten in einem standardisierten Format auf Amateurfunkfrequenzen übertragen werden, kann jeder „mithören“.

COMPASS-1 ist beispielsweise mit einer Miniaturkamera ausgestattet, die Aufnahmen von Landflächen mit der Größe von 416 km x 380 km macht. Die Auflösung ist so gut, dass Wolkenformationen, Küstenlinien und Gebirgsketten identifizierbar werden. Neben der Kamera sind weitere innovative Technologien mit an Bord des kleinen Satelliten. So testen die Entwickler hocheffiziente Triple-Junction-Solarzellen, die einen sehr hohen Wirkungsgrad aufweisen und so die geringe verfügbare Fläche des Satellitenkubus optimal zur Energieumwandlung ausnutzen. Außerdem ist ein GPS-Empfänger im Inneren des Kubus, dessen Software vom DLR für die Satellitenanwendung modifiziert wurde.

Damit stehen für das Lageregelungssystem noch präzisere und schneller verfügbare Daten mit den relevanten Positionsinformationen zur Verfügung. Darüber hinaus wurde ein neuartiger extern entwickelter Funk-Transceiver integriert, der den Informationsaustausch zwischen Satellit und Bodenstation mit einer hohen Datenrate ermöglicht.

Wenn alles gut geht, wird COMPASS-1 bis zu einem halben Jahr (und vielleicht auch länger) regelmäßig seine Daten bei der Bodenstation abliefern, bevor seine elektronischen Bauteile durch die energiereiche Strahlung der Sonne nach und nach beschädigt werden und schließlich ausfallen. Nach ein paar Jahren wird der Pico-Satellit dann in die Erdatmosphäre eintauchen und darin verglühen.

Doch bis dahin wird es vielleicht schon einen Nachfolger an der FH Aachen geben: Der COMPASS-2 ist bereits in Planung.

Media Contact

Dr. Roger Uhle idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Hochleistungsfähiger Ceriumoxid-Thermoschalter für effiziente Wärmeregelung und nachhaltige Energiesysteme.

Langlebig, Effizient, Nachhaltig: Der Aufstieg von Ceriumoxid-Thermoschaltern

Bahnbrechende Thermoschalter auf Basis von Ceriumoxid erreichen bemerkenswerte Leistungen und revolutionieren die Steuerung des Wärmeflusses mit nachhaltiger und effizienter Technologie. Ceriumoxid-Thermoschalter revolutionieren die Steuerung des Wärmeflusses Thermoschalter, die den Wärmeübergang…

Industrielle Roboter senken CO₂-Emissionen in der Fertigung für nachhaltigen Welthandel.

Wie industrielle Roboter Emissionen in der globalen Fertigung reduzieren

Eine neue Studie untersucht die Schnittstelle zwischen industrieller Automatisierung und ökologischer Nachhaltigkeit, wobei der Schwerpunkt auf der Rolle industrieller Roboter bei der Reduzierung der Kohlenstoffintensität von Exporten aus der Fertigung…

3D-gedruckte Biokeramische Transplantate für personalisierte kraniomaxillofaziale Knochenrekonstruktion.

Patienten können durch präzise, personalisierte Biokeramische Transplantate heilen

Eine kürzlich veröffentlichte Übersichtsarbeit revolutioniert die Landschaft der craniomaxillofazialen Knochenregeneration durch die Einführung personalisierter biokeramischer Transplantate. Diese bahnbrechende Forschung untersucht die Herstellung und das klinische Potenzial synthetischer Transplantate, die mittels…