Durchbruch beim Stromtransport in Hochtemperatur-Supraleitern
Durch Optimierung der Korngrenzen in Supraleitungskeramik gelingt Physikern aus Augsburg und Twente eine Versechsfachung der kritischen Stromdichte
Physikern der Universitäten Augsburg und Twente (Niederlande) ist es gelungen, die Stromtragfähigkeit von Hochtemperatur-Supraleitern (HTS) wesentlich zu verbessern. Wie ein Beitrag der Wissenschaftler in der heute erscheinenden Ausgabe von „Nature“ ausführlich darlegt, lässt sich durch die von der deutsch-niederländischen Forschergruppe erzielte Optimierung der elektronischen Eigenschaften der Korngrenzen innerhalb von HTS-Kabeln eine Stromdichte erreichen, die unter den Bedingungen einer von technischen und ökonomischen Gesichtspunkten vorgegebenen Atbeitstemperatur den rentablen Einsatz entsprechender Kabel in vielen Anwendungsbereichen ermöglichen wird.
Supraleiter vermögen elektrischen Strom verlustfrei zu transportieren. Die Realisierung entsprechender Kabel schien bereits 1986 in greifbare Nähe gerückt, nachdem J. G. Bednorz und K. A. Müller Supraleitung, verlustfreien Stromtransport also, in Kupferoxiden entdeckt hatten. Im Gegensatz zu den supraleitenden Materialien, die bis dahin bekannt gewesen waren, handelt es sich bei diesen Kupferoxiden um Keramiken, die – daher der Name Hochtemperatur-Supraleiter – noch bei den relativ hohen Temperaturen von bis zu – 138° C supraleitend sind. Und diese Temperaturen lassen sich – im Gegensatz zu den Tiefsttemperaturen, bei denen „normale“ Supraleiter verlustfreien Stromtransport ermöglichen – technisch verhältnismäßig leicht durch Kühlung mittels flüssigem Stickstoff erreichen.
Trotz intensiver weltweiter Bemühungen erwies sich bisher die Herstellung wettbewerbsfähiger supraleitender Drähte aus Hochtemperatur-Supraleitern dennoch als außerordentlich schwierig. Der Hauptgrund hierfür wurde schon früh erkannt: Die keramischen Drähte bestehen herstellungsbedingt aus einzelnen mikroskopisch kleinen Körnern, die für sich genommen den Strom gut transportieren können. Allerdings muss in einem Kabel der Strom auch von Korn zu Korn fließen. Die Stromtragefähigkeit der Berührungsflächen der Körner – der Korngrenzen also – ist jedoch um ein Vielfaches geringer als die der Körner selbst. Um diese sogenannte kritische Stromdichte zu erhöhen, wurde bisher mit kostspieligen Prozessen versucht, die Körner parallel zueinander auszurichten, da sich hiermit die Eigenschaften der Korngrenzen verbessern lassen.
Mit einem völlig neuartigen Ansatz ist jetzt einer internationalen Arbeitsgruppe am Institut für Physik der Universität Augsburg ein Durchbruch auf diesem Arbeitsgebiet gelungen. In der jüngsten Ausgabe von „Nature“ (Vol. 407, S. 162-164, 14. September 2000) zeigen G. Hammerl und Kollegen, dass sich die Korngrenzen entscheidend verbessern lassen, wenn ihre elektronische Struktur, ähnlich wie dies aus der Halbleitertechnik bekannt ist, gezielt mit Dotierstoffen (z. B. mit Kalzium) optimiert wird. Besonders hilfreich ist hierbei die Verwendung geschichteter Supraleiter, die abwechselnd aus dotierten und undotierten Lagen bestehen. Unter Verwendung solcher Vielfachschichten konnte die kritische Stromdichte der Korngrenzen bei – 196° C, der gewünschten Arbeitstemperatur der supraleitenden Drähte, auf mehrere hunderttausend Ampere pro Quadratzentimeter versechsfacht werden. Da dieser Prozess sowohl preisgünstig als auch kompatibel mit den bisher entwickelten Verfahren zur Drahtherstellung ist, lässt sich ein großes Anwendungspotential dieser Technik erwarten.
Für Rückfragen und weitere Auskünfte:
Prof. Dr. Jochen Mannhart
Lehrstuhl für Experimentalphysik VI/EKM
Institut für Physik der Universität Augsburg
86135 Augsburg
Telefon 0821/598-3650, Fax 0821/598-3652
e-mail: jochen.mannhart@physik.uni-augsburg.de
Weitere Informationen finden Sie im WWW:
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Spitzenforschung in der Bioprozesstechnik
Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…
Datensammler am Meeresgrund
Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…
Rotorblätter für Mega-Windkraftanlagen optimiert
Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…