Kasseler Physiker erzeugen Elektron mit Doppelstruktur

Der Nachweis dafür, dass freie Materieteilchen durch Lichtpulse gezielt geformt und so die Eigenschaften von Laserpulsen auf Elektronen übertragen werden können, ist Forschern am Fachbereich Physik der Universität Kassel gelungen.

Praktische Anwendung könnte die Technologie in der Röntgenmedizin finden, wo mit ihrer Hilfe – zum Nutzen der Patienten – die gefährliche Strahlenbelastung reduziert werden kann.

Der Nachweis dafür, dass freie Materieteilchen durch Lichtpulse gezielt geformt und so die Eigenschaften von Laserpulsen auf Elektronen übertragen werden können, ist Forschern am Fachbereich Physik der Universität Kassel gelungen. Praktische Anwendung könnte die Technologie in der Röntgenmedizin finden, wo mit ihrer Hilfe – zum Nutzen der Patienten – die gefährliche Strahlenbelastung reduziert werden kann. Die Wissenschaftler der Kasseler Forschungsgruppe um Thomas Baumert arbeiteten bei ihren Untersuchungen eng mit den Teams um Gustav Gerber von der Universität Würzburg und Bertrand Girard von der Universität Toulouse zusammen. Die Resultate ihrer Experimente werden die Physiker unter dem Titel „Interferences of ultrashort free electron wave packets“ in der Ausgabe der „Physical Review Letters“ am 28. Oktober 2002 veröffentlichen.

Ansatzpunkt der Arbeit der Forschungsgruppen war die Erzeugung eines doppelten Lichtpulses: In einem so genannten Michelson-Interferometer trifft ein Lichtpuls auf einen teilversilberten Spiegel und wird dabei in zwei Teile aufgespalten. Die Forscher stellten sich die Frage, ob es möglich sei, eine derartige Doppelstruktur auch auf ein freies Elektron zu übertragen. Dazu beschossen sie in einem Experiment ein Atom mit dem sehr kurzen, zweigeteilten Lichtpuls und lösten so ein Elektron aus dem Atom heraus.

Bei der Beantwortung ihrer Forschungsfrage, machten sich die Wissenschaftler den Umstand zu Nutze, dass Elektronen sich nicht immer wie Teilchen verhalten, sondern wie Wellen, ähnlich denen auf einer Wasseroberfläche. Elektronenwellen können sich, ebenso wie Wasser- oder Lichtwellen, überlagern und an bestimmten Orten gegenseitig auslöschen oder verstärken – ein Phänomen, das als Interferenz bekannt ist: Überträgt sich durch den Laserbeschuss die Doppelstruktur des Lichtpulses auf das Elektron, kann es als zweigeteiltes Elektron angesehen werden. Die Elektronenwellen beginnen sich auf ihrem Weg zum Elektronenempfänger zu überlagern und Interferenzen zu erzeugen. Im Kasseler Experiment konnten solche Interferenzen in Form von zeitlichen Veränderungen des Elektronensignals nachgewiesen werden.

Da mit modernster Lasertechnik beliebig komplex geformte Laserpulse erzeugt werden können, eröffnet sich mit dem Nachweis, den Baumert, Gerber und Girard in ihrem Experiment erbrachten, die Möglichkeit, freie Elektronen gezielt zu formen und zu beeinflussen. Derzeit wird in Kassel in Zusammenarbeit mit dem Laserzentrum Hannover untersucht, inwieweit die Elektronen in einer laserbasierten Röntgenquelle dahingehend manipuliert werden können, besonders kurze Röntgenimpulse zu erzeugen. Damit würde die Strahlenbelastung für die Patienten in der Röntgenmedizin deutlich verringert werden.

Infos zum Thema:

Prof. Dr. Thomas Baumert
Universität Kassel
Fachbereich Physik
Telefon: 0561 – 804 44 52
Fax: 0561 – 804 42 02
E-mail: tbaumert@physik.uni-kassel.de

Media Contact

Ingrid Hildebrand idw

Weitere Informationen:

http://www.uni-kassel.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spitzenforschung in der Bioprozesstechnik

Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…

Datensammler am Meeresgrund

Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…

Rotorblätter für Mega-Windkraftanlagen optimiert

Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…