Erstmals hochenergetische Komponente der kosmischen Strahlung gemessen

Die zweite Teleskopstation des Pierre-Auger- Observatoriums blickt von oben über die Pampa Amarilla, die in den kommenden zwei Jahren mit 1600 Wassertanks im Abstand von jeweils 1,5 Kilometer "gefüllt" wird.

Internationales Pierre-Auger-Observatorium in Argentinien misst erstmals hochenergetische Komponente der kosmischen Strahlung

Gleich zwei Meilensteine wurden beim internationalen Pierre-Auger-Projekt in Argentinien im Lauf der letzten Wochen erreicht – und konnten auch gleich mit einer seltenen Messung gefeiert werden. Nach Fertigstellung der zweiten Teleskopstation – unter Federführung des Forschungszentrums Karlsruhe und der Universität Karlsruhe – können die Wissenschaftler dort Leuchtspuren der kosmischen Strahlung räumlich aufgelöst beobachten. Schon in der zweiten Beobachtungsnacht ging ihnen ein Teilchen der hochenergetischen Komponente der kosmischen Strahlung ins Netz. Darüber hinaus wurde von der Kollaboration der einhundertste Oberflächendetektor zum Partikelnachweis in Betrieb gesetzt. Das Pierre-Auger-Observatorium wurde damit schon jetzt, zwei Jahre vor der Fertigstellung, zum weltweit größten Flächendetektor für die Untersuchung der kosmischen Strahlung.

Die zweite Teleskopstation des Pierre-Auger- Observatoriums blickt von oben über die Pampa Amarilla, die in den kommenden zwei Jahren mit 1600 Wassertanks im Abstand von jeweils 1,5 Kilometer „gefüllt“ wird.

In der argentinischen Pampa Amarilla, 1000 Kilometer westlich von Buenos Aires, entsteht mit dem Pierre-Auger-Observatorium das größte Messfeld der Welt zur Untersuchung der kosmischen Strahlung. Auf einer Fläche von 3000 Quadratkilometern sollen hier die energiereichsten Atomkerne untersucht werden, die im Universum zu finden sind. Ihre Herkunft ist unbekannt, ihre Energien sind Hunderte Millionen mal höher, als sie in den größten irdischen Teilchenbeschleunigern erzeugt werden können. Dafür sind sie extrem selten: Weniger als ein Ereignis pro Quadratkilometer und Jahrhundert sagen die Wissenschaftler voraus.
Die Beobachtung dieser kosmischen Überflieger kann vom Erdboden aus erfolgen: Die einfallenden Atomkerne lösen durch Zusammenstoß mit den Bestandteilen der Atmosphäre weitere Partikel aus, die eine Leuchtspur erzeugen und auf die Erdoberfläche vordringen. Beide Signale, die Leuchtspur in der Atmosphäre und die zum Erdboden vordringenden Partikel können mit zwei aufeinander abgestimmten Komponenten des Pierre-Auger-Observatoriums gemessen werden: Teleskopstationen mit Fluoreszenzdetektoren verfolgen die Leuchtspur und großflächig verteilte Detektoren messen die auftreffenden Teilchen.
Bei beiden Komponenten wurden in diesen Tagen wichtige Meilensteine erreicht: Mit der Inbetriebnahme einer zweiten Teleskopstation ist es nun möglich, die Leuchtspuren in der Atmosphäre räumlich aufgelöst zu beobachten und damit die Richtung ihrer Herkunft zu lokalisieren. „In den letzten Tagen konnten wir erstmals Signale aus beiden Teleskopstationen gleichzeitig messen“, freut sich Professor Dr. Johannes Blümer, Leiter des Instituts für Kernphysik des Forschungszentrums Karlsruhe. „Das ist nur in klaren Neumondnächten möglich, weil die Stärke der Signale nur dem Vorbeiflug einer 20-Watt-Lampe mit Lichtgeschwindigkeit in 10 Kilometer Entfernung entspricht.“
Schon in der zweiten Beobachtungsnacht, am 25. Oktober 2003, konnte ein Teilchen der hochenergetischen Komponente der kosmischen Strahlung beobachtet werden. Aufgrund der Messungen in beiden Teleskopstationen wurde die Energie auf 2×1019 Elektronenvolt berechnet. In diesem einen Atomkern war etwa die Energie eines aufgeschlagenen Tennisballs konzentriert.
Außerdem nahmen die Wissenschaftler den einhundertsten Detektor für die zur Erdoberfläche vordringenden Partikel in Betrieb. Diese Detektoren sind gefüllt mit jeweils 12 000 Liter hochreinem Wasser. Beim Eindringen der Partikel entstehen hier charakteristische Lichtblitze, so genannte Cherenkov-Strahlung. „Das Pierre-Auger-Observatorium umfasst nun eine Fläche von über 100 Quadratkilometern und ist damit das weltweit größte Instrument zur Beobachtung der kosmischen Strahlung“, fährt Johannes Blümer fort. „Selbst diese Größe reichte aber nicht aus, um das Ereignis vom 25. Oktober zu messen. Der Partikelschauer ging knapp neben dem derzeitigen Messfeld nieder. Aber wir wachsen kontinuierlich.“
Am Pierre-Auger-Observatorium arbeiten 54 Forschungseinrichtungen aus 15 Nationen mit. Nach der Fertigstellung im Jahr 2005 werden 1600 Wassertanks auf einer Fläche von 3000 Quadratkilometern stehen. Vier Teleskopstationen mit Fluoreszenzdetektoren werden die Leuchtspuren der kosmischen Strahlung verfolgen. Auch auf diesem riesigen Messfeld erwarten die Forscher jährlich nur etwa 30 Beobachtungen der höchstenergetischen Partikel im Universum. Das Observatorium kann auch Teilchen hinunter bis zu einem Zehntel der Energie des Stereo-Ereignisses registrieren: in diesem Bereich werden zehntausende Beobachtungen jährlich erwartet.
Noch in anderer Hinsicht ist das Pierre-Auger-Observatorium ein ungewöhnliches Projekt: Durch technische Verbesserungen und Einsparungen ist es gelungen, die ursprünglich geplanten Kosten von 55 Millionen Dollar auf rund 48 Millionen zu drücken. Lange vor der Fertigstellung des „Südobservatoriums“ denken die Wissenschaftler nun schon über ein vergleichbares Instrument auf der Nordhalbkugel, voraussichtlich in den USA, nach, um in alle Himmelsrichtungen beobachten zu können.

Das Forschungszentrum Karlsruhe ist Mitglied der Helmholtz-Gemeinschaft, die mit ihren 15 Forschungszentren und einem Jahresbudget von rund 2,1 Milliarden Euro die größte Wissenschaftsorganisation Deutschlands ist. Die insgesamt 24 000 Mitarbeiterinnen und Mitarbeiter der Helmholtz-Gemeinschaft forschen in den Bereichen Struktur der Materie, Erde und Umwelt, Verkehr und Weltraum, Gesundheit, Energie sowie Schlüsseltechnologien.

Media Contact

Inge Arnold idw

Weitere Informationen:

http://www.fzk.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Schimpanse in einem tropischen Wald, der genetische Anpassungen zum Überleben zeigt.

Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen

Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…

RNA-bindendes Protein RbpB reguliert den Stoffwechsel der Darmmikrobiota in Bacteroides thetaiotaomicron.

Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität

HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…