Ein "Drachenkopf" auf der Oberfläche von Titan
Internationalem Astronomen-Team gelingen mit adaptiver Optik tiefgründige Durchblicke auf die Oberfläche des Saturnmonds Titan
Neue Aufnahmen der Oberfläche des Saturnmondes Titan von bisher unerreichter Klarheit und Schärfe sind einer internationalen Gruppe von Wissenschaftlern unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg gelungen. Die Messungen wurden mit einem neuartigen Beobachtungsinstrument am Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) in Chile durchgeführt. Auf Titan, dem zweitgrößten Mond im Sonnensystem, wird Anfang 2005 die europäischen Raumsonde „Huygens“ landen. Zur Vorbereitung dieser Mission wird der Saturn-Mond zur Zeit weltweit kontinuierlich beobachtet. Neue Oberflächenkarten sollen die Festlegung des Landeanflugs und des Landeplatzes von „Huygens“ erleichtern.
Titan ist der größte Mond des Ringplaneten Saturn und, fast gleichauf mit dem Jupitermond Ganymed, der zweitgrößte Mond im Sonnensystem. Als einziger Mond weist er eine dichte Atmosphäre auf, deren Druck in den untersten Schichten etwa anderthalb mal so groß ist wie der Luftdruck auf der Erde. Ähnlich der Erdatmosphäre besteht Titans Atmosphäre größtenteils aus Stickstoff. Ihr zweithäufigster Bestandteil ist allerdings nicht Sauerstoff sondern das bei uns als Treibhausgas bekannte Methan. Dichte Wolken aus Methan und anderen Kohlenwasserstoffen hüllen Titan ein und verhindern bisher in fast allen Wellenlängenbereichen einen direkten Blick auf seine Oberfläche.
Bisherige Untersuchungen der Wolken lassen auf einen auf Methan aufbauenden Wetterkreislauf ähnlich der irdischen Wasserzirkulation schließen. Kürzlich von Wissenschaftlern in den USA durchgeführte Radarmessungen deuten ferner darauf hin, dass ein Teil der etwa -175 Grad Celsius kühlen Titanoberfläche von einem Ozean aus verflüssigten Kohlenwasserstoffen bedeckt ist. Mit seiner dichten Atmosphäre, dem Wetterkreislauf und möglichen Ozeanen an seiner Oberfläche ist Titan somit neben der Erde im Sonnensystem einzigartig.
Im Februar 2004 wurde Titan in sechs Nächten mit dem im Infraroten arbeitenden Instrument NACO am Very Large Telescope (VLT) der Europäischen Südsternwarte ESO beobachtet. NACO (Kurzform für NAOS-CONICA) ist eine Kombination aus einem in Frankreich gebauten Instrument zur adaptiven Optik (NAOS) und der unter Führung des Max-Planck-Institut für Astronomie in Heidelberg gebauten Infrarotkamera CONICA. Dabei wurde ein neuartiges Zusatzgerät eingesetzt, das speziell zur Untersuchung von Objekten mit Methanatmosphäre entwickelt wurde. Mit diesem Gerät, dem so genannten „Spectral Differential Imager“ (SDI), entwickelt und gebaut von Rainer Lenzen (Max-Planck-Institut für Astronomie) und Laird Close (Steward Observatory), werden Bilder in mehreren benachbarten Wellenlängen gleichzeitig aufgenommen. Während man in einer Wellenlänge nur das Licht registriert, das von den Wolken in der Hochatmosphäre gestreut wird („Wolkenbilder“), kann man in benachbarten Wellenlängen deutlich und klar Strukturen auf der Oberfläche sehen, da die Methanwolken hier transparent sind (Bild 1).
Die „Wolkenbilder“ werden dazu benötigt, aus den „Oberflächenbildern“ die Effekte der Lichtstreuung in der Atmosphäre Titans herauszurechnen. Die unter der Leitung von Markus Hartung (ESO) und Tom Herbst (Max-Planck-Institut) durchgeführten Beobachtungen erstreckten sich über einen Zeitraum von einer Woche und überdecken 75 Prozent der Oberfläche Titans (Bild 2). Die resultierende Oberflächenkarte zeigt helle und dunkle Strukturen auf Titan. Teile der Oberfläche reflektieren viel Sonnenlicht, während andere Teile das meiste Licht absorbieren. Bei den hellen Strukturen mit hohem Reflexionsvermögen könnte es sich um die von Eis bedeckten „Kontinente“ oder Hochebenen Titans handeln. Die dunklen Strukturen mit niedriger Albedo lassen sich als Ozeane deuten. Auffällig sind die helle Region in Titans südlicher Hemisphäre und die Abfolge dunkler Regionen in der Äquatorregion.
Zur besseren Orientierung haben die Wissenschaftler den dunklen Regionen vorläufige Namen gegeben. Endgültige, offizielle Namen werden erst zu einem späteren Zeitpunkt von der Arbeitsgruppe zur Benennung der Objekte im Sonnensystem der Internationalen Astronomischen Union (IAU) vergeben. Von links nach rechts sind in der Abb. 3 zu sehen: das „liegende H“, der einem Ball nachjagende „Hund“ und der „Drachenkopf“.
Die Wissenschaftler werden die Beobachtung von Titan in den kommenden Monaten fortsetzen, um eine vollständige Karte der Oberfläche Titans zu erstellen und damit das Projekt „Huygens“ der Europäischen Weltraumbehörde ESA zu unterstützen. Detailliertere Oberflächenkarten werden sowohl bei der Planung des Landeanfluges von Huygens als auch bei der Interpretation der Messergebnisse der gemeinsam von NASA und ESA durchgeführten Cassini-Huygens-Mission zum Titan hilfreich sein.
An dem Projekt beteiligt sind Markus Hartung, Chris Lidman, Olivier Marco (ESO), Tom Herbst, Rainer Lenzen, Wolfgang Brandner (Max-Planck-Institut für Astronomie), Laird Close, Beth Biller, Eric Nielsen (Steward Observatory, USA).
Weitere Informationen erhalten Sie von:
Dr. Tom Herbst
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: 06221 528-223, Fax: -246
E-Mail: herbst@mpia.de
Dr. Wolfgang Brandner
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: 06221 528-289
E-Mail: brandner@mpia.de
Dr. Jakob Staude
Max-Planck-Institut für Astronomie, Heidelberg
Tel.: 06221 528-229
E-Mail: staude@mpia.de
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Lange angestrebte Messung des exotischen Betazerfalls in Thallium
… hilft bei Zeitskalenbestimmung der Sonnenentstehung. Wie lange hat eigentlich die Bildung unserer Sonne in ihrer stellaren Kinderstube gedauert? Eine internationale Kollaboration von Wissenschaftler*innen ist einer Antwort nun nähergekommen. Ihnen…
Soft Robotics: Keramik mit Feingefühl
Roboter, die Berührungen spüren und Temperaturunterschiede wahrnehmen? Ein unerwartetes Material macht das möglich. Im Empa-Labor für Hochleistungskeramik entwickeln Forschende weiche und intelligente Sensormaterialien auf der Basis von Keramik-Partikeln. Beim Wort…
Klimawandel bedroht wichtige Planktongruppen im Meer
Erwärmung und Versauerung der Ozeane stören die marinen Ökosysteme. Planktische Foraminiferen sind winzige Meeresorganismen und von zentraler Bedeutung für den Kohlenstoffkreislauf der Ozeane. Eine aktuelle Studie des Forschungszentrums CEREGE in…