UNIK: Quantenkontrolle im Lichte polarisationsgeformter ultrakurzer Laserpulse

Dreidimensionale Darstellung des optimierten polarisationsgeformten Laser-pulses. Die dargestellte Zeitspanne erstreckt sich über drei billionstel Sekunden. <br>Quelle: CINSaT, Universität Kassel

Experiment auf dem Weg zu besseren Medikamenten erfolgreich

Erstmals ist es jetzt in einem Experiment an der Universität Kassel gelungen, mithilfe von polarisationsgeformten ultrakurzen Laserblitzen eine neue Dimension bei der gezielten Steuerung chemischer Reaktionsverläufe aufzuzeigen. Das gezielte Zerlegen und Neuformen von Molekülen kann helfen, eines Tages neue, reinere und schädigungsärmere Medikamente herzustellen, wie Prof. Dr. Thomas Baumert, Fachbereich Naturwissenschaften und Mitglied des interdisziplinären Zentrums für Nanostrukturforschung CINSaT an der Universität Kassel, erläutert. Die Ergebnisse des Experimentes, die gemeinsam mit der Arbeitsgruppe Prof. Dr. Gustav Gerber, Universität Würzburg, durchgeführt wurden, sind jetzt in der renommierten Zeitschrift „Physical Review Letters“ erschienen.

Dass Licht polarisiert sein kann, wissen Photographen schon lange. Dass die Polarisation von Licht aber auf einer Zeitskala von Billiardstel Sekunden gezielt verformt werden kann, ist eine Errungenschaft modernster Lasertechnik, die an der Universität Würzburg in der Arbeitsgruppe Prof. Gustav Gerber erst kürzlich entwickelt wurde. Am Institut für Physik der Universität Kassel in der Arbeitsgruppe Prof. Dr. Thomas Baumert wurde nun in Kooperation mit der Universität Würzburg ein wegweisendes Experiment mit Hilfe dieser Technik durchgeführt. Bisher schon wurden von den Arbeitsgruppen spektakuläre Erfolge bei der aktiven Steuerung chemischer Reaktionsabläufe mit Hilfe geformter ultrakurzer Laserblitze erzielt. Der Trick dabei war, dass in „selbstlernenden Laseranordnungen“ unter anderem der „Farbverlauf“ in einem ultrakurzen Laserblitz dem Reaktionsablauf angepasst wurde. In dem neuen Experiment konnte nun erstmals gezeigt werden, dass eine neue Dimension der Reaktionssteuerung erzielt wird, wenn zusätzlich die Polarisation des Laserlichtes automatisch an den Reaktionsablauf angepasst wird. Das Experiment bildet die physikalische Grundlage für die Synthese neuartiger schädigungsarmer Medikamente.

Für seine grundlegenden Arbeiten, die Steuerung chemischer Reaktionen mit ultrakurzen Lichtpulsen, wurde Baumert – zusammen mit Professor Gustav Gerber und Dr. Volker Seyfried von der Universität Würzburg – mit dem Philip-Morris Forschungspreis 2000 ausgezeichnet. Am California Institute of Technology in Pasadena hatte er zuvor in der Gruppe des Chemikers Ahmed Zewail gearbeitet, der 1999 den Nobelpreis für Chemie erhielt. Baumert ist dabei der Spezialist für Femtosekundenspektrosokopie: Er erforscht, wie sich unter Lichtpulsen mit der Dauer eines millionstel Teils einer milliardstel Sekunde Materie verändert oder Aufschluss über ihre Beschaffenheit gibt. Die Femtosekundenspektroskopie erschließt über die Wechselwirkung zwischen Licht und Materie die Dynamik und Struktur derselben.

Lichtimpulse knacken Moleküle

Baumert nutzt das Licht als Werkzeug. Seine Laserpulse sind für ihn ein winziger Lichthammer. Wer bisher ein Molekül, die Verbindung von mindestens zwei Atomen, knacken will, führte meist Wärmeenergie zu. Das Gefüge wird instabiler, beginnt zu wabern, wie eine zuvor geleeartige Suppe, die langsam zum Köcheln gebracht wird. So, wie aus der Suppe irgendwann winzige Tropfen nach oben ausgeworfen werden, fliegt irgendwann ein Bruchstück aus dem wabernden Atomverbund. Damit aber nicht irgendeines, sondern ein ganz bestimmtes Teil, herausgebrochen wird, greift Baumert zu seinem Femto-Laser-Puls. Der chemische Prozess soll nicht zufällig, sondern gesteuert ablaufen. Baumert beschießt den Atomverbund mit einem ersten Lichtblitz und bringt ihn auf diese Weise in Schwingung. Ein zweiter Lichtblitz bricht femtosekundengenau im richtigen Moment den entscheidenden Teil heraus.

Revolution durch Evolution

Um den richtigen Moment zu finden, bedienen sich die Wissenschaftler eines selbstlernenden Verfahrens, das sich die Regeln der biologischen Evolution zu Nutze macht. So, wie die Natur durch Mutation, Kreuzung oder Klonen ständig versucht, sich zu optimieren, lernt die Laseranlage selbst, ihre Wirkung ständig zu verbessern. Im Lernprozess wird das Licht umgeformt oder zerlegt, so als würde ein Musiker alle Töne, die in einem Knall vereinigt sind, einzeln ausfiltern, um aus ihnen eine Symphonie zu komponieren. Das gezielte Zerlegen und Neuformen von Molekülen, sagt Baumert, könnte zum Beispiel eines Tages helfen, neue, reinere Medikamente herzustellen.

Universität Kassel
Prof. Dr. Thomas Baumert
Fachbereich 18
tel (0561) 804 4452/-4660
fax (0561) 804 4453
e-mail baumert@physik.uni-kassel.de

Media Contact

Universität Kassel

Weitere Informationen:

http://www.uni-kassel.de/presse/pm/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Forscherin Claudia Schmidt analysiert durch Gletscherschmelze beeinflusste Wasserproben arktischer Fjorde.

Brechen des Eises: Gletscherschmelze verändert arktische Fjordökosysteme

Die Regionen der Arktis sind besonders anfällig für den Klimawandel. Es mangelt jedoch an umfassenden wissenschaftlichen Informationen über die dortigen Umweltveränderungen. Forscher des Helmholtz-Zentrums Hereon haben nun an Fjordsystemen anorganische…

Genetische Analyse zeigt neue Risikofaktoren für Depression in verschiedenen Bevölkerungsgruppen

Globale Studie identifiziert Gene für Depressionen in verschiedenen Ethnien

Neue genetische Risikofaktoren für Depression wurden erstmals in allen großen Weltbevölkerungen identifiziert und ermöglichen es Wissenschaftler*innen, das Risiko für Depression unabhängig von der ethnischen Zugehörigkeit vorherzusagen. Die bislang größte und…

Teilnehmer des Gesundes Lebensstilprogramms zur Bewältigung chronischer Kreuzschmerzen

Zurück zu den Grundlagen: Gesunder Lebensstil reduziert chronische Rückenschmerzen

Rückenschmerzen im unteren Rückenbereich sind weltweit eine der Hauptursachen für Behinderungen, wobei viele Behandlungen wie Medikamente oft keine dauerhafte Linderung bieten. Forscher des Centre for Rural Health der Universität Sydney…