Perfekte Kristalle als wissenschaftliche Schmuckstücke
Das Labor zur Proben- und Einkristallherstellung am Institut für Festkörperphysik der Technischen Universität Wien erstrahlt im neuen Glanz. Aber nicht nur das: der besondere Stolz des Institutes ist die neue Anlage zur Züchtung hochwertiger Einkristalle. Damit kann die gezielte Entwicklung neuer Materialen vorangetrieben werden, mit denen sich zur Zeit anstehende Probleme wie z. B. Umweltverträglichkeit, Energieeffizienz lösen lassen. Möglich wurde die 469.000,- Euro teure technische Laboraufrüstung durch die Initiative UNIINVEST 2004, die Universitäre Forschungsinfrastruktur des Bundesministeriums für Wissenschaft, Bildung und Kultur
Bereits bisher konnten am Institut für Festkörperphysik der TU Wien die physikalischen Eigenschaften von Materialien bei extremen Bedingungen, insbesondere bei sehr tiefen Temperaturen und hohen Magnetfeldern auf höchstem wissenschaftlichen Niveau untersucht werden. Was jedoch fehlte, war eine Anlage zur Züchtung hochwertiger Einkristalle – das Kernstück im Bereich einer herausragenden Probenpräparation.
Das mit diesen hochreinen Kristallen erworbene Verständnis bildet die Basis für eine gezielte „intelligente“ Entwicklung von Materialien für konkrete Anwendungen, z. B. supraleitende Sensoren, Datenspeicher, Peltierelemente, thermoelektrische und thermomagnetische Komponenten, Aktuatoren. Entscheidenden Wettbewerbsvorteil wird das Institut für Festkörperphysik auch dadurch erzielen, dass es in Zukunft nicht mehr auf die Bereitstellung hochwertiger Einkristalle durch andere Institutionen angewiesen ist.
Neues Material mit intensivem Blick ins Innere
Ausgegangen werden soll von einer Untersuchung der elektronischen Korrelationen in Schwere-Fermionen-Systemen, um eine darauf aufbauende Maßschneiderung der Eigenschaften für thermoelektrische und magnetische Substanzen zu ermöglichen. Dazu ist ein tief greifendes Verständnis des Zusammenhanges zwischen der chemischen Zusammensetzung und Struktur eines Materials einerseits und seinen physikalischen Eigenschaften andererseits erforderlich. Dies setzt jedoch höchste Materialqualität, detaillierte analytische Methoden und entsprechende theoretische Modellierung voraus.
Für FestkörperphysikerInnen ist es heute schon Voraussetzung. Materialeigenschaften auf quantenmechanischem Niveau zu verstehen und zu modellieren. Der Trend bei den im praktischen Einsatz stehenden Werkstoffen geht aber zu immer größerer Komplexität, die zunehmend aufwändigere Methoden für die Herstellung, Untersuchung und theoretische Beschreiben erfordern.
Beispiele aus der Grundlagenforschung für die Praxis
Derzeit werden elektronisch hochkorrelierte Systeme, in denen Quanteneffekte zu außergewöhnlichen Eigenschaften führen, international besonders aktiv erforscht. Einige dieser Eigenschaften werden bereits für die industrielle Anwendung genutzt, wie z.B. in der Medizin die Supraleitung in der Kern-Spin (NR) Tomographie oder bei Superconducting Quantum Interference Devices (SQUIDS) in der Hirnforschung.
In reduzierten Dimensionen führen starke elektronische Korrelationen zu besonders drastischen Effekten. Daher bergen elektronisch hochkorrelierte Materialien besonders in mikro- und nanostrukturierter Form ein gewaltiges Anwendungspotenzial. So kommt z.B. der „kolossale“ Magnetwiderstand bereits in der Computerindustrie bei den Datenspeichern zur Anwendung.
Besonders viel versprechend erscheint der Einsatz von Kondoisolatoren in thermoelektrischen Bauelementen, die elektrische Energie in Wärme (Wärmepumpen) oder Wärme in elektrische Energie (Generatoren) umwandeln. Sie sind umweltfreundlich, da sie kühlmittel- und emissionsfrei arbeiten. State-of-the-art-Bauelemente auf der Basis von konventionellen Halbleitern können bei Raumtemperatur und oberhalb davon effizient genug betrieben werden. Für Anwendungen bei tiefen Temperaturen als Generatoren in der Raumfahrt oder zur Kühlung von Infrarot-Detektoren sind noch entsprechende Materialentwicklungen notwendig.
Die zuvor erwähnten Kondoisolatoren bieten hier einen wichtigen Ansatzpunkt. Sie haben meist unterhalb der Raumtemperatur riesige Thermokräfte, die in den thermoelektrischen Wirkungsgrad quadratisch eingehen. Von Nachteil sind die hohen thermischen Leitfähigkeiten, die es bisher verhindern, einen großen Temperaturgradienten im Material aufzubauen. Die Suche nach Kondoisolatoren mit niedriger thermischer Leitfähigkeit stellt daher einen wichtigen Aspekt des Forschungsvorhabens am Institut für Festkörperphysik der TU Wien dar.
Optimistischer Blick in die Zukunft
Die Resultate detaillierter Tieftemperaturexperimente an diesen Systemen stellen derzeit die treibende Kraft für theoretische Arbeiten dar und sind somit für das Aufstellen neuer Konzepte unerlässlich. Es ist zu erwarten, dass der Einfluss der Entwicklung auf diesem Gebiet weit über die Grenzen der Festkörperphysik hinausgehen wird. Unser Ziel ist es, diese Entwicklung mitzugestalten und die neuesten Erkenntnisse unmittelbar in die Herstellung von Materialien mit spezifischen quantenmechanischen Eigenschaften einfließen zu lassen.
Zur Erreichung dieses Zieles sind hochwertige Einkristalle unabdingbar. Für deren Züchtung benötigt man den Spiegel-Ofen, eine Probenvorbereitung unter Schutzgas sowie die Präparation geeignet geformter polykristalliner Ausgangsmaterialien. Durch den Ausbau des Computerclusters am Center of Computational Materials Science (CMS) wird die begleitende theoretische Modellierung ermöglicht.
Media Contact
Weitere Informationen:
http://www.tuwien.ac.atAlle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Menschen vs Maschinen – Wer ist besser in der Spracherkennung?
Sind Menschen oder Maschinen besser in der Spracherkennung? Eine neue Studie zeigt, dass aktuelle automatische Spracherkennungssysteme (ASR) unter lauten Bedingungen eine bemerkenswerte Genauigkeit erreichen und manchmal sogar die menschliche Leistung…
Nicht in der Übersetzung verloren: KI erhöht Genauigkeit der Gebärdenspracherkennung
Zusätzliche Daten können helfen, subtile Gesten, Handpositionen und Gesichtsausdrücke zu unterscheiden Die Komplexität der Gebärdensprachen Gebärdensprachen wurden von Nationen weltweit entwickelt, um dem lokalen Kommunikationsstil zu entsprechen, und jede Sprache…
Brechen des Eises: Gletscherschmelze verändert arktische Fjordökosysteme
Die Regionen der Arktis sind besonders anfällig für den Klimawandel. Es mangelt jedoch an umfassenden wissenschaftlichen Informationen über die dortigen Umweltveränderungen. Forscher des Helmholtz-Zentrums Hereon haben nun an Fjordsystemen anorganische…