CONDORs erster Blick ins Weltall
Neuartiger Hochfrequenzempfänger am APEX-Teleskop in Chile liefert erste Ergebnisse
CONDOR, ein neuartiger Detektor des Atacama Pathfinder Experiments (APEX) in der chilenischen Wüste, hat im November 2005 heißes Gas in unmittelbarer Umgebung junger, massereicher Sterne bei extrem hohen Radiofrequenzen von 1,5 Terahertz (THz) – also 1,5 Billionen Hertz – nachgewiesen. CONDOR ermöglicht erstmals Beobachtungen in dem bisher nicht zugänglichen Frequenzbereich an einem Teleskop der 12-Meter-Klasse. Die überraschenden Ergebnisse bestätigen die Erwartungen, durch dieses neuartige Fenster noch unbekannte Phänomene im Weltall aufspüren zu können. Am erfolgreichen Einsatz des CONDOR-Empfängers beteiligt sind Mitarbeiter des I. Physikalischen Instituts der Universität zu Köln sowie des Max-Planck-Instituts für Radioastronomie in Bonn.
„CONDOR hat unsere Erwartungen voll erfüllt“, freut sich Dr. Martina Wiedner, die Leiterin des CONDOR-Projekts (CO N+ Deuterium Observation Receiver). „Wir hatten den Empfänger gut vorbereitet, hatten ein exzellentes Forscherteam auf dem Berg, aber auch ein wenig Glück mit dem Wetter.“ In ihrer Nachwuchsgruppe an der Universität zu Köln wurde der Empfänger aufgebaut. Da sich die hochfrequenten elektromagnetischen Wellen – die Frequenzen sind Tausend mal höher als die eines Mobiltelefons und Millionen mal höher als die eines UKW Senders – nur schwer detektieren lassen, nutzt der Empfänger neueste technologische Entwicklungen. Sehr wichtig war dabei der Einsatz der hochempfindlichen „Hot Electron Bolometer“-Mischer, die in der Gruppe von Dr. Karl Jacobs an der Universität zu Köln entwickelt worden waren. Diese Mischer dienen dazu, die hochfrequenten Radiowellen zur Weiterverarbeitung auf Frequenzen von etwa einem Gigahertz herunterzusetzen. Um eine hohe Empfindlichkeit des Empfängers zu erreichen, wird der Empfänger auf Temperaturen von ca. minus 269 Grad Celsius, also nur vier Grad über dem absoluten Nullpunkt heruntergekühlt.
Terahertz-Beobachtungen sind nur möglich an Teleskopstandorten mit außergewöhnlich wenig Wasserdampf in der Erdatmosphäre, denn der Wasserdampf absorbiert die Terahertz-Strahlung. In einer Höhe von 5.100 Meter über dem Meeresspiegel ist APEX das bisher größte Teleskop an einem solchen Ort. APEX besteht aus einem Spiegel mit einem Durchmesser von 12 Metern, der mit einer Genauigkeit von 15 Mikrometern (sieben Mal dünner als ein menschliches Haar!) einer perfekten Parabel gleicht. Dieses Teleskop ist zurzeit mit verschiedenen Radioempfängern zwischen 300 und 900 Gigahertz ausgestattet. CONDOR ist der erste Empfänger am APEX Teleskop, der elektromagnetische Wellen oberhalb der technologisch anspruchsvollen Frequenzgrenze von einem Terahertz nachweisen kann. „Dies sind die höchsten Frequenzen, die wir je von APEX aus werden beobachten können“, erklärt der APEX-Projektmanager Dr. Rolf Güsten. „Bei noch höheren Frequenzen blockiert die Erdatmosphäre den Blick in den Weltraum und lässt erst wieder im Infraroten astronomische Beobachtungen zu.“
Die neuen Beobachtungen von CONDOR am APEX-Teleskop dringen in das fast unbekannte Universum der Terahertz-Strahlung vor. „So wie man im optischen Licht in verschiedenen Farben verschiedene Dinge sieht und man viel ‚übersehen’ würde, wenn man zum Beispiel nur Blaues erkennen könnte, so bringt auch jede neue ‚Radiofarbe’ neue Erkenntnisse mit sich,“ erklärt Dr. Martina Wiedner. „Terahertz-Strahlung ist besonders gut geeignet, um heißes Gas in Molekülwolken anhand typischer Strahlung (genauer: hoher Rotationsübergängen) des Kohlenmonoxid-Moleküls (CO) zu beobachten. Da Sterne durch eine Verdichtung von Staub und Gas entstehen, geben die Beobachtungen im Terahertz-Bereich Aufschlüsse über die Bildung von Sternen.“
Beim ersten Einsatz des CONDOR-Empfängers wurden CO-Linien bei 1,5 Terahertz nachgewiesen (s. Abb. 2). Das APEX-Teleskop war auf verschiedene Objekte im Orionnebel gerichtet. Überrascht waren die Astronomen über die „Schärfe“ der aufgenommenen Linien, denn es wurden wesentliche größere Breiten der Spektrallinien erwartet. Diese Beobachtungen bestätigen die Vermutung, dass das Gas von der ultravioletten (UV) Strahlung des entstehenden Sternes aufgewärmt wird und nicht durch Zusammenstöße von Gas, wie ursprünglich angenommen.
Weitere Informationen erhalten Sie von:
Dr. Martina Wiedner (Gruppenleiterin des CONDOR-Projekts)
I. Physikalisches Institut, Universität zu Köln, Köln
Tel.: 0221 470-3484
E-Mail: wiedner@ph1.uni-koeln.de
Dr. Rolf Güsten (APEX Projekt-Manager)
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: 0228 525-383
E-Mail: rguesten@mpifr-bonn.mpg.de
Prof. Jürgen Stutzki (SFB-Sprecher und Direktor des I. Physikalischen Institutes)
I. Physikalisches Institut, Universität zu Köln, Köln
Tel.: 0221 470-3494
E-Mail: stutzki@ph1.uni-koeln.de
Prof. Karl Menten (APEX Principal Investigator)
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: 0228 525-297
E-Mail: kmenten@mpifr-bonn.mpg.de
Media Contact
Weitere Informationen:
http://www.mpg.deAlle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Menschen vs Maschinen – Wer ist besser in der Spracherkennung?
Sind Menschen oder Maschinen besser in der Spracherkennung? Eine neue Studie zeigt, dass aktuelle automatische Spracherkennungssysteme (ASR) unter lauten Bedingungen eine bemerkenswerte Genauigkeit erreichen und manchmal sogar die menschliche Leistung…
Nicht in der Übersetzung verloren: KI erhöht Genauigkeit der Gebärdenspracherkennung
Zusätzliche Daten können helfen, subtile Gesten, Handpositionen und Gesichtsausdrücke zu unterscheiden Die Komplexität der Gebärdensprachen Gebärdensprachen wurden von Nationen weltweit entwickelt, um dem lokalen Kommunikationsstil zu entsprechen, und jede Sprache…
Brechen des Eises: Gletscherschmelze verändert arktische Fjordökosysteme
Die Regionen der Arktis sind besonders anfällig für den Klimawandel. Es mangelt jedoch an umfassenden wissenschaftlichen Informationen über die dortigen Umweltveränderungen. Forscher des Helmholtz-Zentrums Hereon haben nun an Fjordsystemen anorganische…