Molekülwolken im Zentrum der Milchstraße

H.E.S.S.-Farbbild der Molekülwolken

H.E.S.S.-Arbeitsgruppe sucht Hadronenbeschleuniger
RUB-Forscher berichten in NATURE

Mit dem in Namibia aufgebauten H.E.S.S. (High Energy Stereoscopic System)-Experiment, einem System von vier miteinander verschalteten Teleskopen, haben Forscher mehrere Molekülwolken im Zentrum unserer Milchstraße im Licht hochenergetischer Photonengammastrahlung entdeckt. Als Quelle für die Strahlung, deren Energie mehr als 100 Giga-Elektronenvolt beträgt, vermuten sie entweder eine Supernova oder das supermassive Schwarze Loch in der Mitte der Milchstraße. „Das europäische H.E.S.S.-Experiment, das kürzlich als Finalist bei der europäischen EU-Descartes Preisvergabe ausgezeichnet wurde, setzt seine bahnbrechenden Entdeckungen damit fort“, freut sich Prof. Dr. Reinhard Schlickeiser, Leiter der an der H.E.S.S.-Kollaboration beteiligten RUB-Arbeitsgruppe (Lehrstuhl für Theoretische Physik IV). Über ihre Entdeckung berichten die Forscher im Wissenschaftsmagazin NATURE vom 9. Februar 2006.

Kandidaten für die Beschleunigung

Um Photonen solch hoher Energie zu generieren, müssen geladene Hadronen der kosmischen Strahlung auf noch höhere Energien beschleunigt werden. Hadronen sind Teilchen, die der sog. Starken Wechselwirkung unterliegen. Prominenteste Vertreter sind die Grundbausteine der Atomkerne in der Materie, die Protonen und Neutronen. Im Falle der hochenergetischen Photonengammastrahlung werden meist Protonen beschleunigt, bevor sie im Zusammenstoß mit den Wasserstoffmolekülen in den Molekülwolken neutrale Pionen erzeugen, die dann sofort in hochenergetische Photonen zerfallen. „Das Neuartige an der H.E.S.S.-Beobachtung ist die Erkenntnis, dass die dazu nötige Hadronenintensität weit stärker sein muss als in unserer Sonnensystem-Umgebung, um die gemessene Gammastrahlungsintensität zu erklären“, erläutert Prof. Schlickeiser. Ein naher aktiver kosmischer Hadronenbeschleuniger im galaktischen Zentrum sorgt für diese Verstärkung. Die zukünftige genaue Vermessung der Molekülwolkenverteilung und der Gammastrahlenverteilung soll helfen, ihn genau zu lokalisieren. Kandidaten sind sowohl die gigantischen Sternexplosionen (Supernova-Explosionen) im Zentralbereich unserer Milchstraße als auch das supermassive Schwarze Loch in ihrem Zentrum.

Gammastrahlungshimmel unter Beobachtung

Am Lehrstuhl für Theoretische Physik IV (Weltraum- und Astrophysik) der Ruhr-Universität gehen die Forscher Fragestellungen der Hochenergieemission von astronomischen Objekten, insbesondere deren Teilchenbeschleunigung nach. Neben Supernova-Überresten stehen die diffuse galaktische Gammastrahlung, die aus Wechselwirkungen der Kosmischen Strahlung in unserer Milchstraße resultiert, und die Jet-Emission in Aktiven Galaktischen Kernen (AGN) im Fokus der Bochumer Forscher. Für die Erforschung dieses breiten Spektrums an Objekten am Gammastrahlungshimmel nutzen die Bochumer Forscher sowohl Satellitendaten als auch erdgebundene Experimente wie die Teleskope des H.E.S.S.-Experimentes.

Forscher des H.E.S.S.-Experiments genießen internationales Renommée

Neben Prof. Schlickeiser arbeiten in der Bochumer H.E.S.S.-Arbeitsgruppe zurzeit Dipl.-Phys. Ralf Schröder, Dr. Andreas Shalchi und Dr. Felix Spanier. Die anderen Bochumer Ko-Autoren (Dr. Anita Reimer, Dr. Olaf Reimer, Dr. Mark Siewert und Dr. Claudia Schuster) haben das Bochumer Institut verlassen, um Anstellungen an anderen Instituten in Deutschland und den USA wahrzunehmen. „Das H.E.S.S.-Experiment gibt unseren Nachwuchswissenschaftlern einen hervorragenden internationalen Ruf, sodass sie von anderen Forschungsinstitutionen abgeworben werden“, stellt Prof. Schlickeiser zufrieden fest. „Das ist einerseits natürlich begrüßenswert. Andererseits müssen wir schnell Absolventen in diesem dynamischen Forschungsbereich ausbilden, um unsere umfangreichen Pflichten, wie die Beobachtungsschichten in Namibia, dem Standort des H.E.S.S.-Teleskops, die Datenauswertung und Dateninterpretation und die begleitende theoretische Modellierung innerhalb der Kollaboration zu erfüllen.“

Titelaufnahme

F. Aharonian et.al.: Discovery of very-high-energy g-rays from the Galactic Centre ridge. In: Nature Volume 439 Number 7077, 9. Februar 2006

Weitere Informationen

Prof. Dr. Reinhard Schlickeiser, Lehrstuhl für Theoretische Physik IV, Fakultät für Physik und Astronomie der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-22032, Fax: 0234/32-14177, E-Mail: rsch@tp4.ruhr-uni-bochum.de

Media Contact

Dr. Josef König idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Selen-Proteine …

Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…

Pendler-Bike der Zukunft

– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…

Neuartige Methode zur Tumorbekämpfung

Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…