ETH-Forscher haben Energie-Quantisierung an künstlichen Quantenringen untersucht
Physiker der Gruppe um Klaus Ensslin haben mit Hilfe eines so genannten Rasterkraftmikroskops Ringstrukturen im Nanometerbereich auf Halbleiterbasis hergestellt und daran die Energie-Quantisierung untersucht. Unter dem Titel „Energy spectra of quantum rings“ veröffentlichen die ETH-Forscher nun in der „Nature“-Ausgabe vom 25. Oktober Resultate des Projekts, das möglicherweise für die Quanten-Informationsverarbeitung von Bedeutung sein könnte.
Elektrischer Strom in Halbleitern entsteht durch Elektronen, die durch leitende Gebiete flitzen. Beobachtet man solche Elektronen in sehr kleinen Strukturen, so stellt man fest, dass sie sich nicht immer wie Teile verhalten, sondern wie Wellen, ähnlich denen auf einer Wasseroberfläche. Elektronenwellen können sich, ebenso wie Wasser- oder Lichtwellen, überlagern und sich an bestimmten Orten gegenseitig auslöschen oder verstärken – ein Phänomen, das als Interferenz bekannt ist.
Pflanzt sich eine Elektronenwelle in einem ringförmigen Leiter fort, so kann sie auch mit sich selbst interferieren. Nur wenn der Umfang des Rings ein ganzzahliges Vielfaches der Wellenlänge ist, kann die Welle auf Dauer im Ring existieren und man spricht von einem „quantisierten Energieniveau“, ähnlich wie bei den seit langem bekannten Energieniveaus in Atomen und Molekülen. Andreas Fuhrer, Silvia Lüscher, Thomas Ihn und Klaus Ensslin von der ETH Zürich und der kürzlich von der ETH nach Freiburg berufene Thomas Heinzel haben demonstriert, dass man diese Energie-Quantisierung in Ringen, die in der Natur zum Beispiel im ringförmigen Benzolmolekül vorkommt, auch künstlich erzeugen kann, indem man die Elektronen in einer sehr kleinen Halbleiterstruktur, einer sogenannten Nanostruktur, interferieren lässt.
Die Wissenschaftler beobachteten nun den Strom durch den Ring in kleinen Magnetfeldern und konnten so die quantisierten Energien messen und deren Verhalten mit bereits bestehenden Theorien vergleichen. Obwohl diese Theorien in vielen Aspekten bestätigt wurden, werfen die Experimente eine Reihe neuer Fragen auf. Der entscheidende Schritt bei diesem Experiment bestand in der Herstellung sehr kleiner Ringe aus dem Halbleiter Galliumarsenid. Dabei wird durch lokale Oxidation der Halbleiteroberfläche eine elektrisch leitende Ringstruktur mit einem Radius von 1/10.000tel Millimeter erzeugt. Zum Vergleich: etwa 100 solcher Ringe passen auf die Breite eines menschlichen Haares. Zur lokalen Oxidation verwendeten die Wissenschaftler ein so genanntes Rasterkraft-Mikroskop, mit dem Strukturen bis zur Größe atomarer Dimensionen abgebildet werden können. Da Galliumarsenid häufig zur Produktion von kommerziellen Mikrochips, beispielsweise in Handys, verwendet wird, enthält dieses Experiment auch einen technologischen Aspekt: Die sehr kleinen Chips der Zukunft werden, völlig anders als bisher, nicht mehr auf der Basis funktionieren, dass Elektronen Teilchen sind, sondern ihre Welleneigenschaften nutzen.
Kontaktperson:
Prof. Dr. Klaus Ensslin
Laboratorium für Festkörperphysik
Tel. +41 (0)1-633 22 09
Fax +41 (0)1-633 11 46
E-Mail: ensslin@phys.ethz.ch
Media Contact
Weitere Informationen:
http://www.cc.ethz.ch/medieninfoAlle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…