Berner Forschende simulieren Verteidigung der Erde

Infografik die zeigt, welche Auswirkungen der Einschlag von DART auf die Umlaufbahn von Didymos B haben könnte.
© NASA / Johns Hopkins APL

Die NASA-Mission «Double Asteroid Redirection Test» (DART) ist der weltweit erste vollumfängliche Test zur planetarischen Verteidigung gegen mögliche Asteroideneinschläge auf der Erde. Forschende der Universität Bern und des Nationalen Forschungsschwerpunkts (NFS) PlanetS zeigen nun, dass der Einschlag der DART-Raumsonde auf ihrem Ziel statt einen relativ kleinen Krater zu hinterlassen den Asteroiden nahezu unkenntlich machen könnte.

Vor 66 Millionen Jahren verursachte ein riesiger Asteroideneinschlag auf der Erde wahrscheinlich das Aussterben der Dinosaurier. Zwar ist zurzeit kein bekannter Asteroid eine unmittelbare Bedrohung. Doch sollte eines Tages ein grosser Asteroid auf Kollisionskurs mit der Erde entdeckt werden, müsste dieser womöglich von seiner Flugbahn abgelenkt werden um katastrophale Folgen zu verhindern.

Im vergangenen November ist die DART-Raumsonde der US-Raumfahrtbehörde NASA als erstes Experiment seiner Grössenordnung für ein solches Manöver in gestartet: Ihre Aufgabe ist es, mit einem Asteroiden zu kollidieren und ihn aus seiner Umlaufbahn abzulenken. So sollen wertvolle Informationen für die Entwicklung einer solchen planetaren Abwehrtechnik gewonnen werden.

In einer neuen Studie, die im Planetary Science Journal veröffentlicht wurde, haben Forschende der Universität Bern und des Nationalen Forschungsschwerpunkts (NFS) PlanetS diesen Einschlag mit einer neuen Methode simuliert. Ihre Ergebnisse deuten darauf hin, dass er sein Ziel viel stärker deformieren könnte als bisher angenommen.

Schutt statt festem Fels

«Im Gegensatz zu dem, was man sich unter einem Asteroiden vorstellt, zeigen direkte Untersuchungen von Raumfahrtmissionen wie der Hayabusa2-Sonde der japanischen Raumfahrtbehörde JAXA, dass Asteroiden eine sehr lockere innere Struktur haben können – ähnlich wie ein Schutthaufen – die durch Gravitationswechselwirkungen und kleine Kohäsionskräfte zusammengehalten wird», sagt Hauptautorin Sabina Raducan vom Physikalischen Institut und dem Nationalen Forschungsschwerpunkt PlanetS an der Universität Bern.

Frühere Simulationen des Einschlags der DART-Mission gingen jedoch meist von einem viel festeren Inneren des Ziel-Asteroiden Dimorphos aus. «Dies könnte das Ergebnis des Zusammenstosses von DART und Dimorphos, der für den kommenden September geplant ist, drastisch verändern», so Raducan. Anstatt einen relativ kleinen Krater auf dem rund 160 Meter grossen Asteroiden zu hinterlassen, könnte der Einschlag von DART mit einer Geschwindigkeit von ungefähr 24’000 km/h Dimorphos vollständig deformieren. Der Asteroid könnte auch viel stärker abgelenkt und grössere Mengen an Material herausgeschleudert werden, als die bisherigen Schätzungen voraussagten.

Ein preisgekrönter neuer Ansatz

«Einer der Gründe, warum dieses Szenario einer losen inneren Struktur bisher nicht gründlich untersucht wurde, ist, dass die notwendigen Methoden nicht zur Verfügung standen», sagt Raducan. «Solche Einschlagsbedingungen können in Laborexperimenten nicht nachgestellt werden, und der relativ lange und komplexe Prozess der Kraterbildung nach einem solchen Einschlag – im Fall von DART eine Sache von Stunden – machte es bisher unmöglich, diese Einschlagsprozesse realistisch zu simulieren», so die Forscherin.

«Mit unserem neuartigen Modellierungsansatz, der die Ausbreitung der Schockwellen, die Verdichtung und den darauf folgenden Materialfluss berücksichtigt, waren wir erstmals in der Lage, den gesamten Kraterprozess zu modellieren, der bei Einschlägen auf kleinen Asteroiden wie Dimorphos entsteht», berichtet Raducan. Für diese Leistung wurde sie bei einem Workshop zur DART-Nachfolgemission HERA von der Europäischen Weltraumorganisation ESA und vom Bürgermeister von Nizza ausgezeichnet.

Eine Erweiterung des Erwartungshorizonts erforderlich

Im Jahr 2024 wird die ESA im Rahmen der Weltraummission HERA eine Raumsonde zu Dimorphos schicken. Ziel ist es, die Folgen des Einschlags der DART-Sonde visuell zu untersuchen. «Um das Beste aus der HERA-Mission herauszuholen, müssen wir ein gutes Verständnis der möglichen Folgen des DART-Einschlags haben», sagt Studienmitautor Martin Jutzi vom Physikalischen Institut und dem Nationalen Forschungsschwerpunkt PlanetS an der Universität Bern. «Unsere Arbeit an den Einschlagssimulationen fügt ein wichtiges potenzielles Szenario hinzu, das uns dazu zwingt, unsere Erwartungen in dieser Hinsicht zu erweitern. Dies ist nicht nur im Zusammenhang mit der Planetenverteidigung von Bedeutung, sondern fügt auch ein wichtiges Puzzleteil zu unserem Verständnis von Asteroiden im Allgemeinen hinzu», so Jutzi abschliessend.

Internationaler Asteroid Day

Am 30. Juni ist Asteroid Day, ein jährlicher Aktionstag, der über Asteroiden, mögliche Risiken und Abwehrmassnahmen aufmerksam machen will. Der Asteroid Day findet am 30. Juni statt, dem Datum, an dem 1908 das sibirische Tunguska-Ereignis stattfand (grosse Explosionen, vermutlich aufgrund eines Asteroiden).

Berner Weltraumforschung: Seit der ersten Mondlandung an der Weltspitze

Als am 21. Juli 1969 Buzz Aldrin als zweiter Mann aus der Mondlandefähre stieg, entrollte er als erstes das Berner Sonnenwindsegel und steckte es noch vor der amerikanischen Flagge in den Boden des Mondes. Dieses Solarwind Composition Experiment (SWC), welches von Prof. Dr. Johannes Geiss und seinem Team am Physikalischen Institut der Universität Bern geplant, gebaut und ausgewertet wurde, war ein erster grosser Höhepunkt in der Geschichte der Berner Weltraumforschung.

Die Berner Weltraumforschung ist seit damals an der Weltspitze mit dabei: Die Universität Bern nimmt regelmässig an Weltraummissionen der grossen Weltraumorganisationen wie ESA, NASA oder JAXA teil. Mit CHEOPS teilt sich die Universität Bern die Verantwortung mit der ESA für eine ganze Mission. Zudem sind die Berner Forschenden an der Weltspitze mit dabei, wenn es etwa um Modelle und Simulationen zur Entstehung und Entwicklung von Planeten geht.

Die erfolgreiche Arbeit der Abteilung Weltraumforschung und Planetologie (WP) des Physikalischen Instituts der Universität Bern wurde durch die Gründung eines universitären Kompetenzzentrums, dem Center for Space and Habitability (CSH), gestärkt. Der Schweizer Nationalsfonds sprach der Universität Bern zudem den Nationalen Forschungsschwerpunkt (NFS) PlanetS zu, den sie gemeinsam mit der Universität Genf leitet.

Wissenschaftliche Ansprechpartner:

Dr. Sabina Raducan
Physikalisches Institut, Weltraumforschung und Planetologie (WP) und NFS PlanetS, Universität Bern
Telefon: +41 31 684 39 96
E-Mail: sabina.raducan@unibe.ch

PD Dr. Martin Jutzi
Physikalisches Institut, Weltraumforschung und Planetologie (WP) und NFS PlanetS, Universität Bern
Telefon: +41 31 684 85 49
E-Mail: martin.jutzi@unibe.ch

Originalpublikation:

Angaben zur Publikation:
Sabina D. Raducan and Martin Jutzi: Global-scale Reshaping and Resurfacing of Asteroids by Small-scale Impacts, with Applications to the DART and Hera Missions, The Planetary Science Journal, June 2022
DOI: 10.3847/PSJ/ac67a7
https://iopscience.iop.org/article/10.3847/PSJ/ac67a7

http://www.unibe.ch

Media Contact

Nathalie Matter Media Relations, Universität Bern
Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…