Biologisches Modellsystem mit „absorbierenden Zustand“: Perfekte Mikroringe aus dem Nichts

Zu Mikroringen verbundene Aktinfasern<br>Bild: Lehrstuhl für Zelluläre Biophysik / TUM<br>

Doch die Natur kennt auch Systeme, deren Dynamik plötzlich in eine Art Endlosschleife mündet. Wie in einem Hamsterrad wäre der Zug in einem solchen System gefangen – die Lok führe zwar, der Zug bewegte sich aber nicht mehr von der Stelle. Die Physiker nennen das einen absorbierenden Zustand.

Wissenschaftlern des Exzellenzclusters Nanosystems Initiative Munich ist es nun gelungen, aus nur drei Komponenten ein Modellsystem aufzubauen, um die Gesetzmäßigkeiten solcher Zustände zu erforschen.

Von aktiven Systemen sprechen Naturwissenschaftler, wenn diese pausenlos Energie umsetzen. Solche Systeme begegnen uns überall: einfache Maschinen fallen ebenso in diese Kategorie wie hochentwickelte Lebewesen. Trotzdem sind unser Wissen und das Verständnis dieser Systeme noch sehr begrenzt. Denn oft finden wir komplexe Phänomene, wo eigentlich simple Verhaltensmuster zu erwarten gewesen wären.

So erging es auch dem Physiker-Team um die NIM-Wissenschaftler Andreas Bausch, Professor für Biophysik an der Technischen Universität München (TUM) und Erwin Frey von der Ludwig-Maximilians-Universität München (LMU). Sie untersuchten, wie sich Fasern des Muskelproteins Aktin verhalten, wenn sie gleichzeitig transportiert und miteinander verbunden werden. Dabei beobachteten die Physiker, dass das System sich plötzlich nicht mehr weiter zu entwickeln scheint, obwohl pausenlos Energie umgesetzt wird.

Die Physiker nennen einen solchen Zustand absorbierend. Was bedeutet, dass sich das System aus diesem Zustand nicht mehr befreien kann. Das Modellsystem der Physiker besteht aus nur drei Komponenten: dem Muskelprotein Aktin, Motorproteinen, die in der Zelle vor allem für Transport und Bewegung zuständig sind, sowie Faszin-Molekülen, um die Aktinfasern untereinander zu verbinden. Mit Hilfe dieses einfachen Modellsystems gelang es den Wissenschaftlern, die zu Grunde liegenden Gesetzmäßigkeiten zu untersuchen.

Die aktive Komponente des Modellsystems, also den Transport der Aktin-Fasern, erledigen Millionen biologischer Motorproteine. Für den Versuch sind sie auf einer Oberfläche verankert. Wird dem System Energie in Form von Adenosintriphosphat (ATP), dem Treibstoff der Motorproteine, bereitgestellt, fangen die Fasern an, sich ungeordnet zu bewegen. Geben die Forscher nun Vernetzermoleküle zu, verbinden sich die Einzelfasern. Dadurch entstehen stetig größere Strukturen, die dann ebenfalls transportiert werden. Gegen Ende des Experiments sind alle Fasern in größere Strukturen eingebaut. Allerdings können sich diese Strukturen nun nicht mehr frei über die Oberfläche bewegen. Sie sind nun ortsfest, für immer und ewig – das System ist in einem absorbierenden Zustand gefangen.

Die entstehenden Muster sind überraschend komplex. So formen sich unter anderem perfekte ringförmige Strukturen. Sie rotieren unter dem Einfluss der Motorproteine fortwährend und beinhalten mehrere Millionen einzelner Fasern. Aus den nur nanometergroßen Bauteilen entstehen dabei wie von Geisterhand Mikrometer große Muster. „Das Erstaunliche daran ist nicht nur die Komplexität der Strukturen, sondern dass bereits dieses einfache System aus nur drei Bestandteilen – Fasern, Motorproteine und Vernetzermoleküle – einen absorbierenden Zustand ausbilden kann“, so Volker Schaller vom Lehrstuhl für Biophysik der TUM, Erstautor der Studie.

„Ein derartiges ‚Minimal-System’ sollte es uns erlauben die experimentellen Ergebnisse auch anhand theoretischer Modelle zu verstehen“, ergänzt Christoph Weber vom Lehrstuhl für Statistische und Biologische Physik der LMU München. Er arbeitet zusammen mit Prof. Frey an theoretischen Konzepten zur Beschreibung aktiver Systeme. Zusammen mit den Experimentatoren konnten so die Gesetzmäßigkeiten der Musterbildung identifiziert werden, und anhand von Computermodellen untersucht werden. So gelang es, Größe und Gestalt der Muster auf Zufallsbewegungen auf molekularer Ebene zurückzuführen.

„Den besonderen Reiz des Modellsystems macht, neben der Faszination der nahezu perfekten Muster, ein scheinbarer Widerspruch aus,“ sagt Biophysiker Andreas Bausch. Danach kann ein aktives System in einen absorbierenden Zustand übergehen, obwohl es beständig Energie verbraucht: „Ein absorbierender Zustand ist für das System wie eine Sackgasse: sobald auch nur ein Teil des Systems den Übergang vollzogen hat, gibt es kein Entrinnen mehr,“ so Bausch. Derartige absorbierende Zustände finden sich in vielen, auch weitaus komplexeren aktiven Systemen, etwa beim Wachstum konkurrierender Zellpopulationen.

Doch liegen all diesen Systemen die gleichen fundamentalen Gesetzmäßigkeiten zu Grunde? Diese Überlegung gehört laut Frey zu den großen offenen Fragen in der Physik komplexer Systeme. „Zur Beantwortung dieser Fragen sind wir aber darauf angewiesen, zunächst einfache Modellsysteme zu entwickeln und zu verstehen“, betont der Münchner Physiker.

Die Forschungsarbeiten wurden unterstützt aus Mitteln des European Research Council (CompNet), der Deutschen Forschungsgemeinschaft (DFG) (SFB 863), des Exzellenzclusters Nanosystems Initiative Munich (NIM), dem Institute for Advanced Study und der International Graduate School of Science and Engineering (IGSSE) der Technischen Universität München sowie dem Bayerischen Elitenetzwerk (CompInt, NanoBioTechnology).

Originalpublikation:
Volker Schaller, Christoph A. Weber, Bejamin Hammerich, Erwin Frey und Andreas R. Bausch: Frozen steady states in active systems. PNAS, Early Edition, online Nov. 14, 2011.

DOI: 10.1073/pnas.1107540108 – http://www.pnas.org/cgi/doi/10.1073/pnas.1107540108

Kontakte:
Prof. Dr. Andreas Bausch
Technische Universität München
Lehrstuhl für Zellbiophysik (E 27)
James Franck Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 12480 – Fax: +49 89 289 14469
E-Mail: andreas.bausch@ph.tum.de
Prof. Dr. Erwin Frey
Ludwig-Maximilians-Universität München
Lehrstuhl für Statistische und Biologische Physik
Theresienstraße 37, 80333 München
Tel.: 089 / 2180-4537
Fax: 089 / 2180-4154
E-Mail: frey@lmu.de

Media Contact

Dr. Ulrich Marsch Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Muster mikrobieller Evolution im See Mendota, analysiert mit Metagenom-Daten und saisonalen Einblicken.

Ein endloser Kreislauf: Wie sich einige Bakterien mit den Jahreszeiten entwickeln

Die längste jemals gesammelte natürliche Metagenom-Zeitreihe mit Mikroben offenbart ein verblüffendes evolutionäres Muster, das sich wiederholt. Ein mikrobielles „Murmeltiertagsjahr“ im Lake Mendota Ähnlich wie Bill Murray im Film „Und täglich…

Mueller-Matrix-Polarimetrie-Technik zur Bewertung der Achillessehnenheilung.

Entdecken Sie bahnbrechende Forschung zur Regeneration der Achillessehne

Achillessehnenverletzungen sind häufig, aber aufgrund der Einschränkungen aktueller Bildgebungstechniken schwer während der Genesung zu überwachen. Forschende unter der Leitung von Associate Professor Zeng Nan von der International Graduate School in…

Echtzeit-Genetische Sequenzierung zur Überwachung neuer Pathogene und Infektionsvarianten

Warum Prävention besser ist als Heilung – Ein neuartiger Ansatz für den Umgang mit Infektionskrankheiten

Forscher haben eine neue Methode entwickelt, um ansteckendere Varianten von Viren oder Bakterien zu identifizieren, die sich unter Menschen auszubreiten beginnen – darunter Erreger von Grippe, COVID, Keuchhusten und Tuberkulose….