Biophysik – Schwarmbildung in Nanosystemen
Aus vielen Bausteinen bestehende, lebende Materie hat bisweilen außergewöhnliche Fähigkeiten, sich selbst zu organisieren und kollektive Bewegungen auszuführen. Das funktioniert bei einem Vogelschwarm im großen Maßstab ähnlich wie bei sich gemeinsam bewegenden Gruppen von Bakterien oder Zellen. Physiker interessieren sich für die zugrunde liegenden theoretischen Mechanismen hinter solch geordneten Strukturen und Bewegungen.
So wollen sie die makroskopischen Phänomene besser verstehen lernen. Dr. Christoph Weber und Professor Erwin Frey, Inhaber des Lehrstuhls für Biologische und Statistische Physik, von der LMU untersuchten deshalb gemeinsam mit ihren Kollegen Dr. Ryo Suzuki und Professor Andreas Bausch von der Technischen Universität München ein Modellsystem aus fadenförmigen Aktin-Molekülen.
Solche Mikrofilamente sind beteiligt an der aktiven Bewegung von Zellen und an intrazellulären Transportvorgängen. Die Filamente ließen sich im Experiment von auf einem Untergrund aufgeklebten molekularen Motoren bewegen.
Die Physiker konnten so studieren, wie sich einzelne Filamente verbiegen, was passiert wenn zwei Filamente zusammenstoßen, und unter welchen Bedingungen sich die Filamente kollektiv ausrichten. Davon berichten sie in aktuellen Arbeiten in den Fachblättern Nature Physics und PNAS.
Gemäß der bisher gängigen Theorie galt vorwiegend die Brown´sche Wärmebewegung als ursächlich dafür, wie sich die dünnen Filamente verbiegen, während die Motoren sie vorwärts bewegen. „Diese Annahme ist aber falsch“, sagt Christoph Weber, der mittlerweile am Max-Planck-Institut für Physik komplexer Systeme arbeitet.
„Die Brown´sche Bewegung hat nur einen geringen Einfluss auf die Form der Filamente.“ Die Münchner Forscher konnten jetzt nachweisen, dass stattdessen die molekularen Motoren nicht nur die Partikel antreiben, sondern auch dafür sorgen, dass sich die Partikel biegen. „Die Filamente zeigen starke lokale Krümmungen, die einer Verteilung gehorchen, die nicht mit der Wärmebewegung erklärt werden kann“, sagt Ryo Suzuki.
Wechselwirkungen nicht nur paarweise
Zudem konnten die Physiker zeigen, dass nicht etwa wiederholte Stöße zwischen jeweils zwei Partikeln dazu führen, dass sich die Filamente nach und nach ausrichten und dann kollektiv vorwärts bewegen. Tatsächlich scheinen gleichzeitige Interaktionen zwischen vielen Partikeln für kollektive Bewegungen verantwortlich zu sein. Filamente sind offenbar in Verbindung untereinander und wechselwirken nicht nur paarweise, sondern ständig mit vielen Partikeln.
Die Forscher konnten im Experiment beobachten, dass sich abhängig von der Dichte und Länge der Filamente ein sogenannter Phasenübergang von einer nicht ausgerichteten zu einer kollektiv bewegenden Phase ergibt. Dies ähnelt dem Kondensieren von Gas zu einer Flüssigkeit, nur mit dem Unterschied, dass sich nicht die Molekülbewegung, sondern die Ausrichtung der Partikel ändert.
Theoretisch betrachtet bedeutet das, dass die bislang favorisierte sogenannte Gastheorie für angetriebene Partikel als Erklärung im Allgemeinen nicht ausreicht, um die Beobachtungen zu erklären. Es sieht eher so aus, als würden sich die Filamente kollektiv wie in einer Flüssigkeit bewegen.
„Wir brauchen neue theoretische Konzepte, die über das gasartige Bild, wie kollektive Bewegung entsteht, hinausgehen“, sagt LMU-Physiker Erwin Frey, dessen Forschung auch von der Exzellenzinitiative NIM gefördert wird. Was auf mikroskopischer Ebene beim gemeinsamen Ausrichten physikalisch passiert, also wie die Filamente reiben oder sich austauschen, ist bislang noch nicht geklärt. Ein besseres Verständnis der Physik aktiv getriebener Systeme würde es erlauben, vollkommen neuartige Nanosysteme, die im Kollektiv agieren, zu konstruieren.
Publikationen:
Polar pattern formation in driven filament systems requires non-binary particle collisions
Ryo Suzuki, Christoph A. Weber, Erwin Frey and Andreas R. Bausch
Nature Physics 2015
10.1038/nphys3423
Random bursts determine dynamics of active filaments
Christoph A. Weber, Ryo Suzuki, Volker Schaller, Igor S. Aranson, Andreas R. Bausch, and Erwin Frey
Proceedings of the National Academy of Sciences (PNAS) 2015
10.1073/pnas.1421322112
Kontakt:
Prof. Dr. Erwin Frey
LMU, Fakultät für Physik
Lehrstuhl für Biologische und Statistische Physik
E-Mail: frey@lmu.de
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…