Blick ins Innere von Molekülen

Die Innsbrucker Wissenschaftler*innen entdeckten Spektrallinien, die zuvor von Theorie-Kollegen in Paris und Bordeaux vorhergesagt wurden.
(c) Uni Innsbruck

Selbst einfachste molekulare Verbindungen sind bis heute nicht zur Gänze verstanden. Wissenschaftler um Roland Wester vom Institut für Ionenphysik und Angewandte Physik haben nun im Detail untersucht, wie negative Ionen sich an Wasserstoffmoleküle – die einfachsten Moleküle, die es gibt – binden und gemeinsam mit internationalen Partnern eine präzise quantenmechanische Beschreibung dafür vorgelegt.

Molekülphysiker Roland Wester
(c) Uni Innsbruck

Das Team um Physiker Roland Wester wollte schon lange die Bindung von Wasserstoffanionen an Wasserstoffmoleküle untersuchen. Dies erwies sich bisher allerdings als experimentell sehr schwierig. Deshalb haben die Wissenschaftler ein ähnliches Modell für die Bindung negativer Ionen ausgewählt: Chlor-Ionen, die eine vergleichbare Verbindung mit Wasserstoffmolekülen eingehen. „Diese Komplexe sind nur schwach gebunden“, sagt Roland Wester. „Es handelt sich eher um physikalische als um chemische Bindungen.“ Nun ist es den Innsbrucker Physikern gemeinsam mit Kollegen in Paris, Bordeaux, Köln und Nijmegen gelungen, die quantenphysikalischen Details dieser Bindung zu verstehen und ihre theoretischen Berechnungen experimentell zu untermauern. Der Molekülkomplex aus Chlor und Wasserstoff kommt in zwei unterschiedlichen Konfigurationen vor, abhängig von der Magnetisierung der Wasserstoffatome. Ein quantenmechanischer Tunneleffekt führt dazu, dass die Spektrallinien dieser beiden Konfigurationen weit auseinanderliegen.

Entscheidend für die Untersuchungen war der Einsatz eines freien Elektronenlasers, dessen Infrarotphotonen ausreichen, um die schwache Bindung der Molekülkomplexe zu lösen. „Mit konventionellen Lasern wären Untersuchungen in diesem Bereich nicht möglich“, sagt Wester, dessen Team die Ionenfalle von Kölner Kollegen am FELIX Laboratory im niederländischen Nijmegen für die Untersuchungen nutzen konnte. Dort gelang es Doktorandin Franziska Dahlmann die entscheidenden Messungen durchzuführen und dabei die Spektrallinien zu entdecken, die zuvor von Theorie-Kollegen in Paris und Bordeaux vorhergesagt wurden. Diese hatten nach früheren Messungen präzise quantenmechanische Berechnungen für den Molekülkomplex durchgeführt und darauf basierend auf weitere, bisher noch nicht entdeckte Spektrallinien für die zweite Konfiguration hingewiesen. Für deren Nachweis war es notwendig, diese schwächer gebundene Konfiguration stark anzureichern und die Ionenfalle dafür bei leicht erhöhten Temperaturen zu betreiben. Auf diese Weise konnten die Wissenschaftler schließlich diese neuen Spektrallinien in ihren Messdaten nachweisen.

Die Ergebnisse wurden im Journal of Chemical Physics veröffentlicht und zieren die Titelseite der aktuellen Ausgabe. Finanziell unterstützt wurden die Forschungen unter anderem vom österreichischen Wissenschaftsfonds FWF und der Europäischen Union. Franziska Dahlmann ist Mitglied des FWF-Doktoratskollegs Atome, Licht und Moleküle (DK-ALM).

Wissenschaftliche Ansprechpartner:

Roland Wester
Institut für Ionenphysik und Angewandte Physik
Universität Innsbruck
Tel.: +43 512 507- 52620
E-Mail: roland.wester@uibk.ac.at
Web: https://www.uibk.ac.at/ionen-angewandte-physik

Originalpublikation:

Strong ortho/para effects in the vibrational spectrum of Cl-(H2). Franziska Dahlmann, et.al., Journal of Chemical Physics 2021
https://doi.org/10.1063/5.0073749

Weitere Informationen:

https://www.uibk.ac.at/ionen-angewandte-physik/molsyst/ – Molecular Systems (Wester Group)
https://www.ru.nl/felix/ – FELIX Laboratory, Nijmegen

Media Contact

Dr. Christian Flatz Büro für Öffentlichkeitsarbeit
Universität Innsbruck

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Das Potenzial alter Elektroautos nutzen

Bundesministerium für Bildung und Forschung fördert neues Graduiertenkolleg Circular E-Cars. Recycling als Chance für das Rheinische Revier. Weil in Elektroautos (E-Cars) im Vergleich zu herkömmlichen Automobilen deutlich mehr wertvolle Nichteisenmetalle…

Forscher erzeugen eindimensionales Gas aus Licht

Physiker der Universität Bonn und der Rheinland-Pfälzisch Technischen Universität Kaiserslautern-Landau (RPTU) haben ein eindimensionales Gas aus Licht erzeugt. Damit konnten sie erstmals theoretische Vorhersagen überprüfen, die für den Übergang in…

Zwergplanet Ceres: Ursprung im Asteroidengürtel?

Hellgelbe Ablagerungen im Consus Krater zeugen von Ceres‘ kryovulkanischer Vergangenheit – und beleben die Diskussion um ihren Entstehungsort neu. Der Zwergplanet Ceres könnte seinen Ursprung im Asteroidengürtel haben – und…

Partner & Förderer