Das atomare Bild des Magnetismus
Supraleiter wecken viele Hoffnungen, besonders bei den Materialien, die bereits bei recht hohen Temperaturen ihren elektrischen Widerstand verlieren – ob für besonders leistungsfähige Bildgebungsverfahren in der Medizin, für die Energieversorgung oder für Magnetschwebebahnen in der Verkehrstechnik.
Hochtemperatursupraleiter, die den Namen verdienen, könnten viele Anwendungen finden. Doch Ihre Faszination steht in keinem Verhältnis dazu, wie rätselhaft ihre Natur noch ist; das behindert bisher die Suche nach widerstandslosen Leitern für praxisnahe Temperaturen.Instituts für Festkörperforschung aus Stuttgart und Augsburg leisten einen Beitrag, die Funktionsweise von eisenbasierten Supraleitern und die Rolle des Magnetismus dabei näher zu verstehen.
Sie haben zum ersten Mal die magnetische Struktur eines sogenannten stark korrelierten Elektronensystems, hier von Eisentellurid, auf atomarer Skala abgebildet. Zuvor gab nur die Neutronenstreuung Auskunft über die magnetische Struktur, die aber ein ungenaues Bild lieferte. Eisentellurid ist eine Muttersubstanz des supraleitenden Eisentelluridselenids. Die Forscher hoffen jetzt, die Methode auch auf Materialien, die sowohl supraleitende als auch magnetische Eigenschaften zeigen, anwenden zu können.
Stoffe wie die Kupferoxid-Keramiken oder die Eisen-Arsen-Verbindungen gelten als Hochtemperatursupraleiter: Sie müssen nicht ganz so stark gekühlt werden wie andere Stoffe, um in den supraleitenden Zustand überzugehen. Warum ist das so? Bislang existieren Hypothesen, aber keine gesicherte Beschreibung der genauen Vorgänge.
„Eine zentrale Frage, die sich viele Forschungsgruppen stellen, ist die nach dem Verhältnis zwischen magnetischen und supraleitenden Eigenschaften der Materialen“, sagt Peter Wahl vom Max-Planck-Institut für Festkörperforschung, „können beide Effekte an ein und derselben Stelle auftreten? Oder schließen sie sich gegenseitig aus?“ Physiker halten es für möglich, dass die magnetischen Eigenschaften der Stoffe gar Ursache für ihre Supraleitfähigkeit sind.
Um das zu überprüfen, wird schon lange nach einem Verfahren gesucht, die magnetischen Strukturen in dieser Art Systemen, den stark korrelierten Elektronensystemen, Atom für Atom zu analysieren. Die Methode der Neutronenstreuung ist bisher das Mittel der Wahl für Untersuchungen der magnetischen Ordnung, allerdings lieferte sie nur räumlich gemittelte Einblicke in die magnetische Struktur und konnte keine Genauigkeit auf atomarer Skala erreichen.
Jetzt bedienten sich die Max-Planck-Forscher aus Stuttgart eines sogenannten spin-polarisierten Rastertunnelmikroskops, das die Orientierung des Elektronenspins, also des magnetischen Moments, an einem einzelnen Atom abbilden kann. Die Methode ist nicht neu, wurde bisher allerdings nur auf metallische Oberflächen und Nanostrukturen angewendet. Allerdings war bisher nicht ganz klar, ob sich mit der Methode auch die magnetische Strutur eines stark korrelierten Systems wie des Eisentellurids aufklären ließe. Denn die oberste Schicht dieses Materials besteht aus Tellur, einem Element, das selbst nicht magnetisch ist.
Die Wissenschaftler zeigten nun, dass das spin-polarisierte Rastertunnelmikroskop trotz der äußeren Tellurschicht auch auf stark korrelierte Elektronensysteme anwendbar ist. Das darunter liegende Eisengitter hat wohl einen zu großen Einfluss. In der Aufnahme des Rastertunnelmikroskops sind deutlich schmale Längsstreifen zu erkennen, die aus der antiferromagnetischen Ordnung im Eisentellurid resultieren. Innerhalb der Streifen sind alle magnetischen Momente gleich orientiert, auf dem daneben liegenden Streifen entgegengesetzt.
Eine experimentelle Herausforderung bestand darin, die Spitze des Mikroskops für die spin-polarisierten Untersuchungen zu magnetisieren. Für Studien an Nanostrukturen auf Oberflächen erreichten Forscher dies vor allem, indem sie die Spitze des Mikroskops erhitzten und mit einem magnetischen Material bedampften. Um dieses aufwändige Verfahren zu umgehen, behalfen sich die Wissenschaftler eines Tricks: Sie sammelten mit der Spitze des Mikroskops einzelne Eisenatome auf, die sich auf der Oberfläche des untersuchten Eisentellurids befinden, und magnetisierten die Spitze auf diese Weise.
Einen interessanten Fund machten die Forscher bei der Temperatur, die nötig ist, damit sich die antiferromagnetische Struktur ausbildet. Im Experiment lag diese bei ungefähr minus 227 Grad Celsius, rund 20 Grad unter der normalerweise notwendigen Temperatur. Der Grund dafür liegt darin, dass die Forscher im Experiment nur die Oberfläche des Eisentellurids betrachteten. Im Vergleich zu Eisentellurid-Lagen aus der Mitte des Kristalls fallen hier die Wechselwirkungen mit einer darüber liegenden Atomschicht weg. Folglich können sich die magnetischen Momente in ihrer Ordnung nicht so gut gegenseitig stabilisieren – die magnetische Struktur bildet sich erst bei einer niedrigeren Temperatur.
Außerdem stellte die Forschungsgruppe um Peter Wahl fest, dass die magnetische Ordnung bei einem höheren Anteil von Eisenatomen komplexer wird: Die Längsstreifen lösen sich teilweise auf und werden von Querstreifen überlagert. Anscheinend bringen die überschüssigen Atome und ihre magnetischen Momente die magnetische und kristalline Ordnung durcheinander. „Hier gibt es noch viel Forschungsspielraum“, sagt Peter Wahl, „ich glaube, dass sich in nächster Zeit ein richtiger Boom entwickeln wird, Gruppen werden an anderen, supraleitenden Materialien ähnliche Experimente durchführen.“ Das Verständnis der Eigenschaften solcher Stoffe wäre der erste Schritt zu effizienterer und irgendwann vielleicht sogar alltagstauglicher Supraleitertechnologie.
Ansprechpartner
Dr. Peter Wahl
Max-Planck-Institut für Festkörperforschung, Stuttgart
Telefon: +49 711 689-1653
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Brechen des Eises: Gletscherschmelze verändert arktische Fjordökosysteme
Die Regionen der Arktis sind besonders anfällig für den Klimawandel. Es mangelt jedoch an umfassenden wissenschaftlichen Informationen über die dortigen Umweltveränderungen. Forscher des Helmholtz-Zentrums Hereon haben nun an Fjordsystemen anorganische…
Globale Studie identifiziert Gene für Depressionen in verschiedenen Ethnien
Neue genetische Risikofaktoren für Depression wurden erstmals in allen großen Weltbevölkerungen identifiziert und ermöglichen es Wissenschaftler*innen, das Risiko für Depression unabhängig von der ethnischen Zugehörigkeit vorherzusagen. Die bislang größte und…
Zurück zu den Grundlagen: Gesunder Lebensstil reduziert chronische Rückenschmerzen
Rückenschmerzen im unteren Rückenbereich sind weltweit eine der Hauptursachen für Behinderungen, wobei viele Behandlungen wie Medikamente oft keine dauerhafte Linderung bieten. Forscher des Centre for Rural Health der Universität Sydney…