Die dunkle Seite des Kometen

Ewige Nacht: Ein Bild des Kometen 67P/Churyumov-Gerasimenko, welches das Kamerasystem OSIRIS am 30. Oktober 2014 aus einer Entfernung von etwa 30 Kilometern aufgenommen hat, ist hier in zwei verschiedenen Sättigungsstufen dargestellt. In der linken Aufnahme liegt die rechte Hälfte im Dunkeln; Strukturen lassen sich dort nicht erkennen. In der rechten Aufnahme werden an derselben Stelle Strukturen sichtbar. © ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Seit Monaten schon liegt die Südseite des Kometen 67P/Churyumov-Gerasimenko in ewiger Dunkelheit. Strukturen oder auch nur grobe Formen sind dort unmöglich zu erkennen. Lediglich das Streulicht von Staubpartikeln in der Umgebung des Kometen lässt einige Oberflächenmerkmale erahnen. Und in diesem Licht hat OSIRIS, das Kamerasystem an Bord der ESA-Raumsonde Rosetta, jetzt einen ersten Blick auf den Kern geworfen.

Seitdem Rosetta im August dieses Jahres am Kometen 67P/Churyumov-Gerasimenko eingetroffen ist, hat das Kamerasystem OSIRIS den Großteil der Oberfläche kartiert. Auf diese Weise wurden beeindruckende Oberflächenstrukturen wie etwa steile Klippen und Brocken sichtbar. Die Südseite von 67P ist jedoch noch völlig unerforscht.

Da die Rotationsachse des Kerns nicht senkrecht auf der Bahnebene steht, sondern gekippt ist, liegen Teile der Oberflächen zeitweise in dauerhaftem Dunkel. Seit einigen Monaten erfährt die Südseite des Schweifsterns eine solche Polarnacht – vergleichbar mit den Wochen völliger Dunkelheit in den Polarregionen der Erde.

Gleichzeitig könnte die dunkle Seite des Kometen helfen, die Aktivität des Körpers besser zu verstehen. „Wenn 67P seinen sonnennächsten Punkt erreicht, trennen ihn nur etwa 186 Millionen Kilometer von unserem Zentralgestirn. In dieser Phase wird gerade diese Südseite beleuchtet und ist somit besonders hohen Temperaturen und starker Strahlung ausgesetzt“, sagt der Leiter des OSIRIS-Teams, Holger Sierks, vom Max-Planck-Institut für Sonnensystemforschung in Göttingen.

Die Wissenschaftler vermuten deshalb, dass diese Seite am stärksten von der Aktivität des Kometen gezeichnet ist. „Wir sind schon sehr gespannt auf den Mai nächsten Jahres. Dann endet die Polarnacht, und wir können die Südseite endlich genau betrachten“, so Sierks.

Bis dahin bietet ein Bild aus den vergangenen Wochen einen kleinen Vorgeschmack. Darin beleuchtet das Streulicht, das Staubteilchen innerhalb der Koma des Kometen reflektieren, seine dunkle Seite. Dadurch lassen sich einige Oberflächenstrukturen erahnen. „Einer normalen Kamera würde diese winzige Lichtmenge kaum weiterhelfen”, erklärt OSIRIS-Teammitglied Maurizio Pajola vom Center of Studies and Activities for Space der Universität Pardua in Italien.

Während gewöhnliche Kamaras Informationen in 8 Bits pro Pixel speichern und somit nur 256 verschiedene Graustufen unterscheiden können, ist OSIRIS eine 16-Bit-Kamera. Das bedeutet, dass ein einzelnes Bild mehr als 65.000 Graustufen enthalten kann – deutlich mehr als etwa ein Computerbildschirm darzustellen in der Lage ist. „Aus diesem Grund kann OSIRIS schwarze Oberflächen, die dunkler als Kohle sind, und weiße Regionen so hell wie Schnee in ein und demselben Bild abbilden“, so Pajola.

Die OSIRIS-Wissenschaftler nutzen diese hohe dynamische Bandbreite nicht nur, um in das Dunkel der Polarnacht zu blicken, sondern auch, um Informationen über Regionen zu erhalten, die in manchen Bildern für kurze Zeit im Schatten liegen.

Rosetta ist eine Mission der Europäischen Weltraumagentur ESA mit Beiträgen der Mitgliedsstaaten und der amerikanischen Weltraumagentur NASA. Rosettas Landeeinheit Philae wurde von einem Konsortium unter Leitung des Deutschen Zentrums für Luft- und Raumfahrt (DLR), des Max-Planck-Instituts für Sonnensystemforschung (MPS) und der französischen und italienischen Weltraumagentur (CNES und ASI) zur Verfügung gestellt. Rosetta ist die erste Mission in der Geschichte, die einen Kometen anfliegt, ihn auf seinem Weg um die Sonne begleitet und eine Landeeinheit auf seiner Oberfläche absetzt.

Das wissenschaftliche Kamerasystem OSIRIS wurde von einem Konsortium unter Leitung des Max-Planck-Instituts für Sonnensystemforschung in Zusammenarbeit mit CISAS, Universität Padova (Italien), Laboratoire d'Astrophysique de Marseille (Frankreich), Instituto de Astrofísica de Andalucia, CSIC (Spanien), Scientific Support Office der ESA (Niederlande), Instituto Nacional de Técnica Aeroespacial (Spanien), Universidad Politéchnica de Madrid (Spanien), Department of Physics and Astronomy of Uppsala University (Schweden) und dem Institut für Datentechnik und Kommunikationsnetze der TU Braunschweig gebaut. OSIRIS wurde finanziell unterstützt von den Weltraumagenturen Deutschlands (DLR), Frankreichs (CNES), Italiens (ASI), Spaniens (MEC) und Schwedens (SNSB).

Ansprechpartner

Dr. Birgit Krummheuer

Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Sonnensystemforschung, Göttingen

Telefon: +49 551 384979-462

E-Mail: krummheuer@mps.mpg.de

 
Dr. Holger Sierks
Max-Planck-Institut für Sonnensystemforschung, Göttingen

Telefon: +49 551 384979-242

E-Mail: sierks@mps.mpg.de

Media Contact

Dr. Birgit Krummheuer Max-Planck-Institut

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…