Die frühesten Strukturen des Universums

Die Simulationsergebnisse zeigen das Anwachsen kleiner Überdichten kurz nach der sogenannten Inflationsphase des sehr frühen Universums.
Bild: Jens Niemeyer

Das extrem junge Universum kann nicht direkt beobachtet werden, lässt sich aber mithilfe mathematischer Theorien rekonstruieren. Physiker der Universitäten Göttingen und Auckland, Neuseeland, haben die Fähigkeit komplexer Computersimulationen, diese frühe Epoche zu beschreiben, wesentlich verbessert. Sie entdeckten, dass sich innerhalb einer Billionstelsekunde nach dem Urknall ein komplexes Netz an Strukturen bilden kann, dessen Eigenschaften der Verteilung von Galaxien im heutigen Universum ähneln.

Im Unterschied zu heute sind diese primordialen Strukturen jedoch mikroskopisch klein. Typische Klumpen besitzen nur Massen von einigen Gramm und haben räumliche Ausdehnungen, die geringer sind als diejenigen heutiger Elementarteilchen. Die Ergebnisse der Studie sind in der Fachzeitschrift Physical Review D erschienen.

Die Forscher konnten Regionen höherer Dichte beobachten, die durch ihre eigene Schwerkraft zusammengehalten werden. „Das physikalische Raumvolumen, das unsere Simulation repräsentiert, würde millionenfach in ein Proton passen“, sagt Prof. Dr. Jens Niemeyer, Leiter der Arbeitsgruppe für Astrophysikalische Kosmologie der Universität Göttingen. „Es ist wahrscheinlich die größte Simulation des kleinsten Bereichs des Universums, die bisher durchgeführt wurde.“

Obwohl die berechneten Strukturen sehr kurzlebig wären und schließlich in Elementarteilchen „verdampfen“, lassen sich in zukünftigen Experimenten möglicherweise Spuren dieser extremen Frühphase nachweisen. „Die Entstehung solcher Strukturen sowie deren Bewegungen und Wechselwirkungen sollten ein Hintergrundrauschen von Gravitationswellen erzeugt haben“, sagt Benedikt Eggemeier, Doktorand in der Arbeitsgruppe von Niemeyer und Erstautor der Studie. „Mithilfe unserer Simulationen lässt sich die Stärke dieses Gravitationswellensignals berechnen, welches mit zukünftigen Detektoren messbar sein könnte.“

Ebenso ist denkbar, dass durch den Kollaps einiger dieser Strukturen winzige schwarze Löcher entstanden. In diesem Fall könnten sie gegenwärtig beobachtbare Konsequenzen haben oder einen Beitrag zur mysteriösen dunklen Materie leisten. „Andererseits,“ sagt Prof. Dr. Richard Easther von der Universität Auckland, „falls die Simulationen die Entstehung schwarzer Löcher vorhersagen und wir sie nicht sehen, haben wir einen neuen Weg gefunden, Modelle des sehr jungen Universums zu testen.“

Wissenschaftliche Ansprechpartner:

Benedikt Eggemeier
Georg-August-Universität Göttingen
Institut für Astrophysik
Friedrich-Hund-Platz 1, 37077 Göttingen
E-Mail: benedikt.eggemeier@phys.uni-goettingen.de

Prof. Dr. Jens Niemeyer
Georg-August-Universität Göttingen
Institut für Astrophysik
Friedrich-Hund-Platz 1, 37077 Göttingen
E-Mail: jens.niemeyer@phys.uni-goettingen.de

Originalpublikation:

Eggemeier B et al. Formation of inflation halos after inflation. Physical Review D (2021). DoI: 10.1103/PhysRevD.103.063525. https://journals.aps.org/prd/abstract/10.1103/PhysRevD.103.063525

Weitere Informationen:

https://www.uni-goettingen.de/de/3240.html?id=6207 Fotos

Media Contact

Thomas Richter Öffentlichkeitsarbeit
Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Schimpanse in einem tropischen Wald, der genetische Anpassungen zum Überleben zeigt.

Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen

Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…

RNA-bindendes Protein RbpB reguliert den Stoffwechsel der Darmmikrobiota in Bacteroides thetaiotaomicron.

Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität

HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…