Dunkles Paar

Doppelsternsystem auf dem Weg zur Verschmelzung von Schwarzen Löchern. Der kleinere und heißere Stern mit 32 Sonnenmassen (links) verliert aktuell Material an seinen 55 Sonnenmassen schweren Begleiter.
(c) UCL / J. daSilva

Massive, sich berührende Sterne werden als Schwarze Löcher kollidieren.

Zwei massive, sich berührende Sterne in einer Nachbargalaxie sind auf dem besten Weg, zu Schwarzen Löchern zu werden, die bei ihrem Zusammenstoß starke Wellen im Raumzeitkontinuum auslösen könnten. Das zeigt eine Studie von Wissenschaftlern des University College London und der Universität Potsdam.

In der im Journal „Astronomy & Astrophysics“ veröffentlichten Studie betrachteten die beiden Nachwuchswissenschaftler ein bekanntes Doppelsternsystem, also zwei Sterne, die um einen gemeinsamen Schwerpunkt rotieren, und analysierten Daten von verschiedenen Teleskopen am Boden und im All. Sie fanden heraus, dass die Sterne aus der Nachbargalaxie „Kleine Magellansche Wolke“ miteinander im Kontakt stehen und Material austauschen, wobei der eine Stern den anderen „nährt“. Sie umkreisen sich alle drei Tage und sind die massivsten bisher bekannten Doppelsterne.

Vergleicht man die Ergebnisse mit theoretischen Modellen der Entwicklung von Doppelsternsystemen, so wird der Stern, der derzeit Material verliert, zuerst zu einem Schwarzen Loch kollabieren und nach einiger Zeit beginnen, Material von seinem Sternbegleiter abzusaugen. Der Begleiter wird daraufhin ebenfalls zu einem Schwarzen Loch. Diese Schwarzen Löcher werden sich innerhalb weniger Millionen Jahre bilden und einander für viele Milliarden Jahre umkreisen, um schließlich mit einer solchen Kraft zu kollidieren, dass sie Gravitationswellen – Verschiebungen im Raumzeitkontinuum – erzeugen.

Doktorand Matthew Rickard, leitender Autor der Studie vom University College London, sagt: „Dank der Gravitationswellendetektoren Virgo und LIGO wurden in den letzten Jahren Dutzende verschmelzender Schwarzer Löcher entdeckt. Bisher haben wir jedoch noch keine Sterne beobachtet, die zu Schwarzen Löchern dieser Größe kollabieren und in einer Zeitspanne verschmelzen, die kürzer ist als das Alter des Universums. Unser am besten passendes Entwicklungsmodell legt nahe, dass diese Sterne in 18 Milliarden Jahren zu Schwarzen Löchern verschmelzen werden. Die Entdeckung von Sternen auf diesem Entwicklungspfad so nah an unserer Galaxis bietet uns eine hervorragende Gelegenheit, noch mehr über die Entstehung dieser Systeme zu erfahren.“

Co-Autor Daniel Pauli, Doktorand an der Universität Potsdam, ergänzt: „Dieses Kontakt-Doppelsternsystem ist das massivste, was bisher beobachtet wurde. Der kleinere und heißere Stern besitzt 32 Sonnenmassen und verliert aktuell Material an seinen 55 Sonnenmassen schweren Begleiter.“

In ihrer Studie haben die Wissenschaftler verschiedene Wellenlängenbereiche des Doppelsternsystems spektroskopisch vermessen, von ultraviolettem über sichtbares bis hin zu infrarotem Licht. Dazu verwendeten sie unter anderem Daten des NASA Hubble Space Telescope (HST) und des Multi Unit Spectroscopic Explorer (MUSE) vom ESO Very Large Telescope in Chile. Mit diesen Daten haben sie die Radialgeschwindigkeit der Sterne, die angibt wie schnell sie sich zu uns hin oder von uns wegbewegen, sowie ihre Massen, Helligkeiten, Temperaturen und Umlaufbahnen bestimmt. Schließlich passten sie diese Parameter mit einem Entwicklungsmodell an.

Ihre spektroskopische Analyse zeigt, dass die äußere Hülle des kleineren Sterns durch den größeren Stern aufgesaugt wurde. Sie beobachteten auch, dass die Radien beider Sterne die Roche-Grenze, also die Region um einen Stern, in der Material durch die Gravitation an den Stern gebunden ist, überschreiten. Die Beobachtung belegt, dass Material vom kleineren Stern auf den Begleiter übergeht.

Zur künftigen Entwicklung der Sterne erklärt Rickard: „Der kleinere Stern wird in nur 700.000 Jahren zu einem Schwarzen Loch kollabieren, entweder in einer spektakulären Supernova-Explosion oder auch ohne Explosion aufgrund seiner Masse. Für etwa drei Millionen Jahre werden beide unbequeme Nachbarn sein, bevor das erste Schwarze Loch anfängt, Masse von seinem Begleiter anzuziehen und sich an ihm ‚zu rächen‘.“

Pauli, der die Modellierungen durchgeführt hat, fügt hinzu: „Nach nur 200.000 Jahren, einem astronomischen Augenblick, wird der Begleitstern ebenfalls zu einem Schwarzen Loch kollabieren. Die beiden massereichen Sterne werden einander weiterhin für einige Milliarden Jahre umkreisen. Langsam werden sie durch die Abgabe von Gravitationswellen Energie verlieren, bis sie sich immer schneller im Sekundentakt umkreisen und schließlich in 18 Milliarden Jahren miteinander verschmelzen, während sie über Gravitationswellen enorme Energiemengen freisetzen.“

Link zur Publikation: M. J. Rickard and D. Pauli, A low-metallicity massive contact binary undergoing slow Case A mass transfer: A detailed spectroscopic and orbital analysis of SSN 7 in NGC 346 in the SMC, Astronomy & Astrophysics, https://doi.org/10.1051/0004-6361/202346055

Abbildung: Doppelsternsystem auf dem Weg zur Verschmelzung von Schwarzen Löchern. Der kleinere und heißere Stern mit 32 Sonnenmassen (links) verliert aktuell Material an seinen 55 Sonnenmassen schweren Begleiter. Bildrechte: UCL / J. daSilva

Kontakt:
Daniel Pauli, Institut für Physik und Astronomie
Tel.: +49 331 977-5916
E-Mail: dpauli@astro.physik.uni-potsdam.de

Medieninformation 27-04-2023 / Nr. 041
UCL/Dr. Stefanie Mikulla

Universität Potsdam
Referat Presse- und Öffentlichkeitsarbeit
Am Neuen Palais 10
14469 Potsdam
Tel.: +49 331 977-1474
Fax: +49 331 977-1130
E-Mail: presse@uni-potsdam.de
Internet: www.uni-potsdam.de/presse

Wissenschaftliche Ansprechpartner:

Daniel Pauli, Institut für Physik und Astronomie
Tel.: +49 331 977-5916
E-Mail: dpauli@astro.physik.uni-potsdam.de

Originalpublikation:

https://doi.org/10.1051/0004-6361/202346055

http://www.uni-potsdam.de

Media Contact

UCL/Dr. Stefanie Mikulla Referat für Presse- und Öffentlichkeitsarbeit

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spitzenforschung in der Bioprozesstechnik

Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…

Datensammler am Meeresgrund

Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…

Rotorblätter für Mega-Windkraftanlagen optimiert

Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…