Eine neue Art von Quantenbits in Halbleiter-Nanostrukturen
Einem deutsch-chinesischen Forschungsteam ist es gelungen, ein Quantenbit in einer Halbleiter-Nanostruktur zu realisieren.
Mithilfe eines besonderen Energieübergangs erzeugten die Forschenden in einem Quantenpunkt – einem eng begrenzten Bereich des Halbleiters – einen überlagerten Zustand, in dem ein Elektronenloch gleichzeitig zwei verschiedene Energieniveaus besaß. Solche Überlagerungszustände sind die Basis für das Quantencomputing.
Die Anregung des Zustands benötigt normalerweise einen Laser, der Licht im Terahertz-Bereich ausstrahlt. Diese Wellenlänge ist jedoch zu groß, um den Strahl auf den winzigen Quantenpunkt fokussieren zu können. Der deutsch-chinesischen Gruppe gelang die Anregung nun mit zwei fein aufeinander abgestimmten kurzwelligen Lasern.
Das Team um Feng Liu von der Zhejiang University in Hangzhou berichtet über die Ergebnisse gemeinsam mit einer Gruppe um Dr. Arne Ludwig von der Ruhr-Universität Bochum sowie weiteren Forschenden aus China und Großbritannien in der Zeitschrift „Nature Nanotechnology“, online veröffentlicht am 24. Juli 2023.
Laser lösen strahlenden Auger-Prozess aus
Das Team machte sich den sogenannten strahlenden Auger-Prozess zunutze: En Elektron fällt von einem höheren auf ein niedrigeres Energieniveau und gibt dabei seine Energie teils in Form eines einzelnen Lichtteilchens ab, teils überträgt es die Energie auf ein anderes Elektron. Der gleiche Prozess kann auch bei Elektronenlöchern – fehlenden Elektronen – beobachtet werden. 2021 war es einem Forschungsteam erstmals gelungen, den strahlenden Auger-Prozess gezielt in einem Halbleiter anzuregen (https://news.rub.de/presseinformationen/wissenschaft/2021-11-24-physik-ein-ansch…).
In der aktuellen Arbeit zeigten die Forschenden, dass der strahlende Auger-Prozess kohärent manipuliert werden kann: Sie nutzten zwei verschiedene Laserstrahlen, deren Intensitäten in einem bestimmten Verhältnis zueinanderstanden. Mit dem ersten Laser hievten sie ein Elektron-Loch-Paar im Quantenpunkt auf ein höheres Energieniveau. So entstand ein Quasiteilchen aus zwei Löchern und einem Elektron. Mit einem zweiten Laser lösten sie den strahlenden Auger-Prozess aus, um eines der Löcher in nochmals höhere Energiezustände zu bringen.
Zwei Zustände gleichzeitig
Mithilfe fein abgestimmter Laserpulse erzeugte das Team eine Überlagerung zwischen dem Loch-Grundzustand und dem höheren Energiezustand. Das Elektronenloch existierte also gleichzeitig in beiden Zuständen. Solche Überlagerungen sind die Basis für Quantenbits, die anders als herkömmliche Bits nicht nur in den Zuständen „0“ und „1“ existieren, sondern auch in Überlagerungen davon.
Die hochreinen Halbleiterproben für das Experiment produzierte Hans-Georg Babin an der Ruhr-Universität Bochum unter der Leitung von Dr. Arne Ludwig am Lehrstuhl für Festkörperphysik von Prof. Dr. Andreas Wieck. Hierbei wurde unter anderem die Ensemble-Homogenität der Quantenpunkte erhöht und auf eine hohe Reinheit der hergestellten Strukturen geachtet. Diese Maßnahmen erleichterten den chinesischen Partnern um Jun-Yong Yan und Feng Liu die Durchführung der Experimente.
Förderung
Die Arbeiten wurden unterstützt von der National Natural Science Foundation of China (Fördernummern 62075194, 61975177, U21A6006, U20A20164, 62122067), dem Fundamental Research Funds for the Central Universities (2021QNA5006), dem Bundesministerium für Bildung und Forschung (16KISQ009) sowie der Deutschen Forschungsgemeinschaft (DFH/UFA CDFA-05-06).
Für Informationen zur Herstellung der Proben:
Dr. Arne Ludwig, Prof. Dr. Andreas Wieck
Angewandte Festkörperphysik
Fakultät für Physik und Astronomie
Ruhr-Universität Bochum
Tel.: +49 234 32 25864 oder -26726
E-Mail: arne.ludwig@ruhr-uni-bochum.de, andreas.wieck@ruhr-uni-bochum.de
Für Informationen zu den optischen Experimenten:
Dr. Feng Liu, Junyong Yan
College of Information Science & Electronic Engineering
Zhejiang University
China
Tel.: +86 134 56814 630 oder +86 137 05705 729
E-Mail: feng_liu@zju.edu.cn, jun-yong@zju.edu.cn
Originalpublikation:
Jun-Yong Yan et al.: Coherent control of a high-orbital hole in a semiconductor quantum dot, in: Nature Nanotechnology, 2023, DOI: 10.1038/s41565-023-01442-y, https://www.nature.com/articles/s41565-023-01442-y
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Kompaktes LCOS-Mikrodisplay mit schneller CMOS-Backplane
…zur Hochgeschwindigkeits-Lichtmodulation. Forscher des Fraunhofer-Instituts für Photonische Mikrosysteme IPMS haben in Zusammenarbeit mit der HOLOEYE Photonics AG ein kompaktes LCOS-Mikrodisplay mit hohen Bildwiederholraten entwickelt, das eine verbesserte optische Modulation ermöglicht….
Neue Perspektiven für die Materialerkennung
SFB MARIE geht in 3. Förderperiode: Großer Erfolg für die Terahertz-Forschung: Wissenschaftler:innen der Universität Duisburg-Essen und der Ruhr-Universität Bochum erforschen die mobile Materialerkennung seit 2016 im Sonderforschungsbereich/Transregio MARIE. Mit 14,8…
Fahrradhelme aus PLA: Sportartikel mit minimiertem CO2-Fußabdruck
Design, Lifestyle und Funktionalität sind zentrale Kaufkriterien bei Sportartikeln und Accessoires. Für diesen boomenden Markt werden viele Produkte aus Asien nach Europa eingeführt, die nicht ökologisch nachhaltig sind. Forschende des…