Die Erfindung des Lichtrades
Mikro- und Nanoteilchen lassen sich mit Licht immer besser steuern. Forscher des Max-Planck-Instituts für die Physik des Lichts in Erlangen können nun mit einem Laser winzige Partikel um eine Achse rotieren lassen, die senkrecht zum Lichtstrahl steht – ein Teilchen dreht sich also wie der Reifen eines Fahrrades in seiner Fortbewegungsrichtung.
Das erreichten die Forscher, indem sie ein photonisches Rad erzeugten: Licht mit einem rein transversalen Drehimpuls. Ein solcher Zustand des Lichts war bisher nicht bekannt. Physiker gingen davon aus, dass es nur Licht mit einem propellerförmigen longitudinalen Drehimpuls gibt. Die neue Form der Kontrolle über Lichtwellen macht optische Pinzetten vielseitiger, mit denen sich Zellen und andere Mikro- und Nanoobjekte festhalten und manövrieren lassen.
Licht kann erstaunliche Kräfte entwickeln. Den Regeln der Quantenmechanik zufolge ist Licht sowohl eine elektromagnetische Welle als auch ein Strom von Photonen. Da es einen Impuls besitzt, erfährt ein transparentes Teilchen, durch das ein Lichtstrahl fällt, einen Rückstoß, wenn die Photonen es verlassen. Die Kraft, die ein einzelnes Photon dabei ausübt, ist zwar fast verschwindend klein, in intensiven und stark gebündelten Laserstrahlen summiert sich die Wirkung unzähliger Lichtteilchen jedoch so, dass sich damit Objekte bis zu wenigen Mikrometern Größe in einer optischen Falle festhalten oder gezielt bewegen lassen. Biologen etwa nutzen diesen Effekt in optischen Pinzetten, um Zellen im Fokus eines Mikroskops zu fixieren und zu drehen. Dafür verschaffen ihnen Wissenschaftler um Gerd Leuchs, Direktor am Max-Planck-Institut für die Physik des Lichts, nun neue Möglichkeiten.
Das Team hat ein photonisches Rad erzeugt, also Licht mit rein transversalem Drehimpuls: Das elektrische Feld der elektromagnetischen Welle kreist darin um eine Achse, die wie die Achse eines Rades senkrecht Fortbewegungsrichtung steht. Bisher kannten Physiker vor allem Licht mit longitudinalem Drehimpuls, in dem das elektrische Feld wie ein Propeller um eine Achse in Ausbreitungsrichtung rotiert. „Die Möglichkeit, dass Licht über den gesamten Strahlquerschnitt gemittelt einen rein transversalen Drehimpuls haben kann, war bisher nicht erkannt worden.“, sagt Peter Banzer, der maßgeblich an der Entdeckung beteiligt war.
Im Brennpunkt von zwei zirkular polarisierten Strahlen entsteht das Lichtrad
Denn wie die Erlanger Physiker nun sowohl theoretisch als auch praktisch zeigten, lässt sich Licht mit rein transversalem Drehimpuls sehr wohl erzeugen, und zwar auf erstaunlich einfache Weise. „Wenn es einmal auf dem Papier steht, sieht es leicht aus“, sagt Gerd Leuchs. Aber man muss erst einmal auf die Idee kommen. Mit dieser Idee setzen die Forscher bei zirkular polarisiertem Licht an. Eine Welle zirkular polarisierten Lichts dreht sich wie eine Schraube um die Ausbreitungsrichtung des Strahls und hat einen propellerförmigen longitudinalen Drehimpuls. Erzeugen lässt sich zirkular polarisiertes Licht zum Beispiel durch einen doppelbrechenden Kristall.
Ob sich die Lichtwelle dabei im oder gegen den Uhrzeigersinn dreht, hängt von der Orientierung des Kristalls ab. Die Erlanger Physiker fügten zwei Scheiben dieses Materials so zusammen, dass ein Teil eines Laserstahls im und ein Teil gegen den Uhrzeigersinn rotiert. Die beiden gegeneinander rotierenden Teilstrahlen fokussierten sie dann mit einer Linse auf einen Brennpunkt der Größe der Lichtwellenlänge. „Unsere theoretischen Betrachtungen ergaben, dass wir im Brennpunkt Licht mit einem rein transversalen Drehimpuls erhalten – das photonische Rad“, sagt Peter Banzer. Auch im Experiment zeichnet sich die besondere Eigenschaft ab. Mit einem Nano-Teilchen aus Gold haben sie bereits die charakteristische Form des Fokus vermessen, die im Zusammenhang mit dem rein transversalen Drehimpuls des fokussierten Strahls auftritt. Bislang bleibt der Nachweis des um eine transversale Achse rotierenden Lichtfeldes noch indirekt. Aber schon bald wollen die Erlanger Physiker mit dem rotierenden Lichtfeld ein Nanoteilchen um sich selbst kreisen lassen.
Das Lichtrad verschafft nicht nur Biologen neue experimentelle Möglichkeiten, die Zellen unter dem Mikroskop künftig in drei Raumrichtungen rotieren lassen könnten. Auch in der Quanten- und Nanooptik erweitert die neue Art, Lichtwellen zu formen, den experimentellen Spielraum. Zudem dürfte sie sich in der Nanotechnik als nützlich erweisen, etwa um Nanomixer oder andere Nanomaschinen zu konstruieren. „Wenn wir Teilchen in einer optischen Falle zunächst im Kreis beschleunigen und dann die Falle öffnen, sollten sie kreiselnd davon sausen, und wir könnten eine Art Dragsterrennen mit Nanopartikeln veranstalten“, erklärt Gerd Leuchs. „Diese Möglichkeiten, die das photonische Rad uns gibt, wollen wir nun in weiteren Experimenten ausloten.“
Ansprechpartner
Dr. Peter Banzer
Max-Planck-Institut für die Physik des Lichts, Erlangen
Telefon: +49 9131 6877-128
E-Mail: peter.banzer@mpl.mpg.de
Prof. Dr. Gerd Leuchs
Max-Planck-Institut für die Physik des Lichts, Erlangen
Telefon: +49 9131 6877-100
Fax: +49 9131 6877-109
E-Mail: gerd.leuchs@mpl.mpg.de
Originalpublikation
Peter Banzer, Martin Neugebauer, Andrea Aiello, Christoph Marquardt, Norbert Lindlein, Thomas Bauer und Gerd Leuchs
The photonic wheel – demonstration of a state of light with purely transverse angular momentum
Journal of the European Optical Society, 2. Mai 2013; doi: 10.2971/jeos.2013.13032
Media Contact
Weitere Informationen:
http://www.mpg.de/7303808/photonisches_radAlle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Die Roboterhand lernt zu fühlen
Fraunhofer IWS kombiniert Konzepte aus der Natur mit Sensorik und 3D-Druck. Damit Ernteroboter, U-Boot-Greifer und autonome Rover auf fernen Planeten künftig universeller einsetzbar und selbstständiger werden, bringen Forschende des Fraunhofer-Instituts…
Regenschutz für Rotorblätter
Kleine Tropfen, große Wirkung: Regen kann auf Dauer die Oberflächen von Rotorblättern beschädigen, die Leistungsfähigkeit und Wirtschaftlichkeit von Windenergieanlagen können sinken, vor allem auf See. Durch die Entwicklung innovativer Reparaturlösungen…
Materialforschung: Überraschung an der Korngrenze
Mithilfe modernster Mikroskopie- und Simulationstechniken konnte ein internationales Forschungsteam erstmals beobachten, wie gelöste Elemente neue Korngrenzphasen bilden. Mit modernsten Mikroskopie- und Simulationstechniken hat ein internationales Forscherteam systematisch beobachtet, wie Eisenatome…