Fehlerfrei ins Quantencomputer-Zeitalter
Damit die heute existierenden Prototypen von Quantencomputern ihr volles Potenzial entfalten, müssen sie erstens viel größer werden, d.h. über deutlich mehr Quantenbits verfügen, und zweitens mit Fehlern umgehen können. „Aufwändige Rechnungen scheitern heute noch daran, dass die Systeme aufgrund von Störungen aus dem Ruder laufen“, sagt Rainer Blatt vom Institut für Experimentalphysik der Universität Innsbruck und dem Akademieinstitut für Quantenoptik und Quanteninformation (IQOQI).
„Durch Fehlerkorrektur lässt sich dieser Prozess eindämmen.“ Jeder herkömmliche Computer nutzt solche Verfahren, um Fehler bei der Speicherung und Übertragung von Daten zu erkennen und möglichst zu korrigieren. Dazu wird vor der Datenspeicherung oder Übertragung den Daten Redundanz hinzugefügt, meist in Form zusätzlicher Bits, die zum Erkennen und Korrigieren von Fehlern genutzt wird.
Auch für den Quantencomputer wurden ähnliche Verfahren entwickelt, die im Wesentlichen darin bestehen, die Quanteninformation in mehreren, miteinander verschränkten physikalischen Quantenbits zu speichern.
„Hier werden die Eigenschaften der Quantenwelt genutzt, um Fehler zu erkennen und zu korrigieren“, beschreibt Markus Müller von der Swansea University in Großbritannien. „Wenn es gelingt, die Störungen unter eine bestimmte Schwelle zu drücken, können wir Quantencomputer für beliebig komplexe Rechnungen bauen, indem wir die Zahl der verschränkten Quantenbits entsprechend erhöhen.“
Ionen im Labyrinth gefangen
Gemeinsam mit seinem Kollegen Alejandro Bermudez Carballo betont Markus Müller, dass auf dem Weg zu diesem Ziel die Möglichkeiten der technologischen Plattformen bestmöglich ausgenutzt werden müssen. „Für die Fehlerkorrektur benötigen wir Quantenschaltkreise, die besonders stabil sind und auch unter realistischen Bedingungen verlässlich arbeiten, sogar wenn während der Fehlerkorrektur selbst zusätzliche Fehler auftreten“, erklärt Bermudez.
Sie gemeinsam haben eine Reihe von fehlertoleranten Protokollen weiterentwickelt und untersucht, wie diese mit den heute verfügbaren Operationen auf Quantencomputern umgesetzt werden können. Eine neue Generation von segmentierten Ionenfallen bietet dafür ideale Möglichkeiten: Einzelne Ionen können rasch zwischen verschiedenen Zonen einer Falle hin- und hertransportiert werden.
Zeitlich sorgfältig festgelegte Abläufe erlauben parallele Prozesse in unterschiedlichen Speicher- und Rechenzonen. Durch den Einsatz von zwei unterschiedlichen Ionenarten in einer Falle lässt sich die eine Art als Träger der logischen Quantenbits einsetzen, während die andere zur Fehlermessung, Rauschunterdrückung und Kühlung dient.
Neue Generation von Quantencomputern
Auf Basis der experimentellen Erfahrung von Forschungsgruppen in Innsbruck, Mainz, Zürich und Sydney haben die Forscher Kriterien definiert, anhand deren bestimmt werden kann, ob die Quantenfehlerkorrektur erfolgreich ist. Auf dieser Basis können die Wissenschaftler die weitere Entwicklung von Ionenfallen-Quantencomputern leiten, um schon in naher Zukunft ein logisches Quantenbit zu realisieren, das mit Hilfe der Fehlerkorrektur die Eigenschaften eines rein physikalischen Quantenbits übersteigt.
Aufwändige numerische Simulationen der neuen Fehlerkorrekturprotokolle in der Arbeitsgruppe um Simon Benjamin an der Universität Oxford zeigen, wie die Hardware der nächsten Generation von Ionenfallen-Quantencomputern weiterentwickelt werden muss, um in Zukunft fehlertolerant rechnen zu können. „Unsere numerischen Ergebnisse unterstreichen, dass die modernsten Ionenfallen-Technologien als Basis für den Bau von großen, fehlertoleranten Quantencomputern sehr gut geeignet sind“, erklärt Benjamin.
Die Forschungen wurden unter anderem vom österreichischen Wissenschaftsfonds FWF und der Tiroler Industrie finanziell unterstützt.
Publikation: Assessing the Progress of Trapped-Ion Processors Towards Fault-Tolerant Quantum Computation. A. Bermudez, X. Xu, R. Nigmatullin, J. O’Gorman, V. Negnevitsky, P. Schindler, T. Monz, U. G. Poschinger, C. Hempel, J. Home, F. Schmidt-Kaler, M. Biercuk, R. Blatt, S. Benjamin, and M. Müller. Phys. Rev. X 7, 041061 DOI: 10.1103/PhysRevX.7.041061
Rückfragehinweis:
Rainer Blatt
Institut für Experimentalphysik
Universität Innsbruck
Telefon: +43 512 507 52450
E-Mail: Rainer.Blatt@uibk.ac.at
Markus Müller
Department of Physics
Swansea University
Telefon: +44 1792 604925
E-Mail: Markus.Muller@swansea.ac.uk
Christian Flatz
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Telefon: +43 512 507 32022
Mobil: +43 676 872532022
E-Mail: christian.flatz@uibk.ac.at
http://quantumoptics.at – Quantum Optics and Spectroscopy Group
http://www.uibk.ac.at/exphys/ – Institut für Experimentalphysik
http://iqoqi.at – Institut für Quantenoptik und Quanteninformation
http://markus-mueller.website/ – Website Markus Müller
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…