Flüssigkristalle unter Stress
Gemeinsam entdeckten theoretische Physiker der Heinrich-Heine-Universität Düsseldorf (HHU) und Physikochemiker der Universität Oxford neue, geordnete Schichtstrukturen in sogenannten smektischen Flüssigkristallen. In der aktuellen Ausgabe von „Nature Communications“ berichten sie über teilchenaufgelöste Experimente mit mikroskopischen Stäbchen und ihre zugehörige Theorie. Physik: Veröffentlichung in Nature Communictions
Flüssigkristalle besitzen – wie ihr Name nahelegt – sowohl flüssige wie auch kristalline Eigenschaften. Sie sind komplexe Materialien mit hoher Funktionalität. Aus dem Alltagsleben sind sie nicht wegzudenken, sie finden sich etwa in Flachbildschirmen.
Einige Flüssigkristalle bilden unter geeigneten Bedingungen eine besondere Schichtenphase aus, die man „smektisch“ – abgeleitet vom griechischen Wort für „Seife“ – nennt, weil sie oft in Seifen vorkommt. In ihr ordnen sich die Makromoleküle wie in einer Schlachtreihe in eine Richtung schichtenweise kristallin an; innerhalb einer Schicht können sie sich aber wie in einer Flüssigkeit bewegen.
Prof. Dr. Hartmut Löwen und Dr. René Wittmann vom Institut für Theoretische Physik II der HHU erforschten zusammen mit experimentell arbeitenden Physikochemikern an der Universität Oxford, was passiert, wenn solche smektischen Schichten einer extremen ringförmigen geometrischen Einschränkung ausgesetzt werden, – sich also nicht frei verteilen können, sondern einer erzwungenen äußeren Form anpassen müssen. Abhängig von der genauen Geometrie der vorgegebenen Form krümmen sich die Schichten und platzen schließlich auf, oder aber sie ordnen sich senkrecht zueinander an. Am Ende einer solchen Schicht entsteht dann jeweils ein so genannter topologischer Defekt, der charakteristisch für die vorgegebene Geometrie ist.
„Spannend daran ist, dass wir so gezielt topologische Defekte im smektischen Zustand erzeugen und vernichten können“, sagt Prof. Löwen: „Dies kann feinaufgelöst auf der Teilchenebene mithilfe mikrometergroßer Stäbchen untersucht und modelliert werden.“ Bei ihren Untersuchungen klassifizierten die Forscher nicht nur die verschiedenen Topologien von smektischen Defekten, sondern entwickelten dazu auch eine mikroskopische Theorie für die extrem verspannte smektische Phase.
Die theoretischen Ergebnisse und Modellrechnungen aus Düsseldorf bestätigten die Experimente in Oxford. Die dortigen Kollegen beobachteten per Mikroskop winzige Kolloidstäbchen, die sich auf dem Boden eines Gefäßes mit mikrometergroßen Ausstanzung befanden. Wie sich diese Stäbchen ausrichteten, wenn man sie in bestimmte geometrische Formen zwang, nahmen die Forscher auf.
Dr. Wittmann: „Mit unserer Dichtefunktionaltheorie konnten wir nicht nur alle experimentellen Beobachtungen reproduzieren, sondern auch bestimmen, welche dieser Strukturen den Wettbewerb um die höchste Stabilität gewinnt, also in einem Experiment am wahrscheinlichsten beobachtet wird.“
Die Ergebnisse der Düsseldorfer Physiker sind nicht nur grundlagenwissenschaftlich relevant, sondern haben eine konkrete Anwendungsperspektive: Mit ihnen können möglicherweise neue empfindliche Schalter gebaut werden, die durch topologische Defekte gesteuert werden.
In nachfolgenden Projekten soll die Stressbelastung von solchen Stäbchenpaketen nochmals deutlich erhöht werden, um die Systemantwort auf diese extrem hohen Strapazierungen herauszufinden.
Originalpublikation:
R. Wittmann, L. B. G. Cortes, H. Löwen and D. G. A. L. Aarts, Particle-resolved topological defects of smectic colloidal liquid crystals in extreme confinement, Nature Communications, 2021
DOI: 10.1038/S41467-020-20842-5
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Spitzenforschung in der Bioprozesstechnik
Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…
Datensammler am Meeresgrund
Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…
Rotorblätter für Mega-Windkraftanlagen optimiert
Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…