Grundlagen für ultraschnelle magnetische Speicher gelegt

Darstellung der Präzession eines magnetischen Moments ohne (links) und mit Nutation.
Grafik: Prof. Dr. Olav Hellwig

Internationales Forschungsteam unter Beteiligung der TU Chemnitz beobachtet erstmalig ultra-schnelle Bewegungen in ferromagnetischen Dünnschichtsystemen – Veröffentlichung in Nature Physics.

Für moderne Speicher- und Datenverarbeitungs-Technologien auf ferromagnetischer Basis ist es essentiell, die Dynamik magnetischer Phänomene auf Zeitskalen von einem Tausendstel einer Milliardstel Sekunde (Terahertz-Bereich) zu verstehen. Das betrifft zum Beispiel Anwendungen in MRAMs (Magnetic Random Access Memories) oder die klassischen und nach wie vor relevanten Festplatten in Datenzentren. Diese arbeiten bisher bei der Datenübertragung im Gigahertz-Bereich (ein Gigahertz entspricht einer Schwingung mit einer Periode von einer Milliardstel Sekunde).

Die nun vorliegenden Ergebnisse aus der Grundlagenforschung eines internationalen Forschungsteams unter Beteiligung der Professur Magnetische Funktionsmaterialen (Leitung: Prof. Dr. Olav Hellwig) der Technischen Universität Chemnitz eröffnen mögliche Anwendungen zu noch schnelleren und leistungseffizienteren Datentransfers im Terahertz-Bereich. Ein Terahertz entspricht einer Schwingung von einem Tausendstel einer Milliardstel Sekunde.

Ihre Ergebnisse veröffentlichten die Forscherinnen und Forscher in der renommierten Fachzeitschrift „Nature Physics“.

Erstmals ultra-schnelle Nutation in ferromagnetischen Dünnschichtsystemen beobachtet

Kern der Beobachtung des Teams waren sogenannte Dünnschichtsysteme. Alle moderne Speicher- und Datenverarbeitungs-Technologien basieren auf Dünnschichtsystemen. Damit werden in der Regel Schichten von einer Atomlage bis in den Mikrometer-Bereich bezeichnet. Forscherinnen und Forscher verwenden hier Schichten, die typischerweise im Dickenbereich von 1 bis 50 nm liegen. Was in diesen ferromagnetischen Schichten auf solch kurzer Zeitskala passiert, war bisher aufgrund mangelnder Experimentiertechniken und entsprechender Daten auf solch kurzer Zeitskala nicht klar.

Dem Forschungsteam ist es nun erstmals gelungen, eine ultra-schnelle Nutation in ferromagnetischen Dünnschichtsystemen zu beobachten. Als Nutation bezeichnet man, vereinfacht gesagt, die drehende Bewegung der Figurenachse eines kräftefreien Kreisel (s. Abb.).

Zu dem Team gehörten Physikerinnen und Physiker der TU Chemnitz, des Helmholtz-Zentrums Dresden-Rossendorf (HZDR), der Universität Duisburg-Essen, des Deutschen Zentrums für Luft und Raumfahrt, der Technischen Universität Berlin, der École Polytechnique (Frankreich), der Federico II Universität von Neapel, der „Parthenope“ Universität von Neapel, der Ca’ Foscari Universität von Venedig und der Universität von Stockholm. Die Federführung lag bei den Wissenschaftlern und Experten für Ultrakurzzeit-Experimente Kumar Neeraj und Stefano Bonetti aus Italien.

Für die Untersuchungen wurde die TELBE-Anlage am HZDR genutzt, die Prof. Hellwig und sein Team aus Chemnitz und Dresden unterstützten. Die TELBE-Anlage ist Teil des Elektronenbeschleunigers ELBE und erlaubt auf einzigartige Weise die Erzeugung von phasen-stabilen Hochfeld-Terahertz Pulsen mit extrem flexiblen Parametern wie Wiederholungsrate, Pulsform und Polarisation. Die für die Experimente nötigen Proben wurden an der Professur Magnetische Funktionsmaterialien der TU Chemnitz hergestellt. Zum Einsatz kam dabei die sogenannte „Magnetron-Sputter-Depositionstechnik“.

Chemnitzer und Dresdner Expertise bei u.a. magneto-dynamischen Eigenschaften

„Meine Gruppe hat die Proben für diese Messungen hergestellt und sie entsprechend für diese Messungen zusammen mit unseren Kollaborationspartnern optimiert“, erklärt Prof. Olav Hellwig. Das betreffe die Optimierung der Schichtabfolge, Schichtdicke und lateralen Mikrostruktur sowie die magneto-dynamischen Eigenschaften, wie zum Beispiel die magnetische Dämpfung. „Dieser Vorgang gehört zur speziellen Expertise meiner Arbeitsgruppe für Magnetische Funktionsmaterialien in Chemnitz und Dresden“, sagt Hellwig.

Als Methode kam das gängige „Pump-Probe Experiment“ zum Zuge. Dafür bestrahlten die Forscherinnen und Forscher die Dünnschichtproben mit ultrakurz gepulster Strahlung im Terahertz-Wellenlängenbereich. Diese wurden wiederum mit einem ultrakurzen, variabel zeitverzögerten 800 nm Femto-Sekunden Laser Puls detektiert. So prüfte das Team, wie die magnetischen Momente in der Probe auf den Terahertz Puls reagieren.

„Mit diesen superkurzen Terahertz-Pulsen kann man magnetische Systeme gezielt auf ultrakurzer Zeitskala beeinflussen und dann hoffentlich bald auch kontrollieren. Dabei haben wir in dieser Publikation neben der schon bekannten Präzessionsbewegung zusätzlich zum ersten Mal eine Nutationsbewegung der ferromagnetischen Momente beobachtet, die auf einer noch schnelleren Zeitskala stattfindet“, fasst Olav Hellwig zusammen.

Multimedia: In einem Podcast in der Reihe „TUCpersönlich“ (https://www.tu-chemnitz.de/tu/pressestelle/aktuell/8754) gibt Olav Hellwig Einblick in seine zwei großen Hobbies und wie er seine Doppelrolle als Universitätsprofessor und Helmholtz-Forschungsgruppenleiter meistert.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Olav Hellwig, Tel. +49-(0)371-531-30521, E-Mail olav.hellwig@physik.tu-chemnitz.de

Originalpublikation:

Publikation: Neeraj, K., Awari, N., Kovalev, S., Olav Hellwig et al. Inertial spin dynamics in ferromagnets. Nat. Phys. 17, 245–250 (2021). https://doi.org/10.1038/s41567-020-01040-y

Weitere Informationen:

https://www.tu-chemnitz.de/tu/pressestelle/aktuell/8754

Media Contact

Matthias Fejes Pressestelle und Crossmedia-Redaktion
Technische Universität Chemnitz

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…