Heiße Elektronen weisen Weg zum perfekten Lichteinfang

Martin Piecuch justiert das Elektronenmikroskop zum Nachweis der heißen Elektronen. Foto: Technische Universität Kaiserslautern

Licht absorbierende Schichten spielen in vielen alltäglichen Anwendungen eine Rolle – zum Beispiel in Solarzellen oder Sensoren. Mit ihrer Hilfe wird Licht in elektrischen Strom oder Wärme umgewandelt, die Schichten fangen das Licht förmlich ein.

Obwohl diese Absorberschichten verbreitet eingesetzt werden, verstehen Wissenschaftler noch nicht, welcher Mechanismus das Einfangen von Licht mit der höchsten Effizienz ermöglicht. Ein Team von Physikern der Universität Bielefeld, der Technischen Universität Kaiserslautern und der Universität Würzburg hat nun nachgewiesen, dass sehr effiziente Lichtstreuung in ultradünnen rauen Schichten das einfallende Licht so lange einfängt, bis es vollständig absorbiert ist.

Ihre Ergebnisse stellen die Forschenden jetzt (31.08.2015) im Magazin Nature Photonics vor. Die Forschung kann dabei helfen, dünne Absorberschichten noch effizienter zu machen, um so Energie zu sparen.

In den Experimenten wurden ultrakurze Lichtimpulse eingesetzt. Wenn solche Impulse glatte, ultradünne Schichten durchdringen, treten sie auf der anderen Seite fast unverändert und kaum abgeschwächt wieder aus. In rauen Schichten hingegen verhindern Unregelmäßigkeiten, dass der Lichtimpuls sich ungehindert im Material ausbreitet. Bei vielen Unregelmäßigkeiten bewegt sich der Lichtimpuls auf einem geschlossenen Pfad und bleibt so lange gefangen, bis das Licht absorbiert ist.

Zwei Effekte haben den Physikern erlaubt, diesen Mechanismus des Lichteinfangs nachzuweisen. Zum Einem wird vom eingefangenen Licht ein winziger Anteil freigelassen. Die zeitliche Entwicklung dieses Lichts zeigt direkt, wie lange es in der Schicht eingefangen war. Ein zweiter Effekt liefert Informationen über die räumliche Lokalisierung des Lichteinfangs und die lokale Energieabsorption.

Die Absorption eines ultrakurzen Lichtimpulses regt Elektronen im Absorbermaterial an und heizt diese kurzfristig auf Temperaturen von mehreren 1000 Grad Celsius auf – vergleichbar zur Temperatur der Sonnenoberfläche. Bei diesen Temperaturen treten Elektronen aus dem Material aus, welche mittels Elektronenmikroskopie mit hoher räumlicher Auflösung nachgewiesen wurden. Die Messungen zeigen, dass das Licht in kleine Bereiche von etwa einem Mikrometer Durchmesser eingefangen und dort auch absorbiert wird.

Der zugrundeliegende Effekt dieser so genannten Anderson-Lokalisierung wurde bereits vor mehr als 60 Jahren beschrieben und seitdem mehrmals nachgewiesen. Neu ist, dass der Mechanismus auch für dünne Absorberschichten funktioniert. „Dies eröffnet neue Wege für die Entwicklung hocheffizienter Absorber und kann so beispielsweise dazu beitragen, Dünnschicht-Solarzellen oder Sensoren zu verbessern“, sagt Professor Dr. Walter Pfeiffer von der Universität Bielefeld.

Ziel der Forschung sei es, Dünnschichtabsorber effizienter zu machen, so dass sie im Alltag angewendet werden können. Künftig wollen die Forschenden untersuchen, welche Struktur die Schicht aufweisen muss, um Licht perfekt einzufangen, um dann ein universelles Konzept für die effiziente Lichtabsorption durch Anderson-Lokalisierung zu entwickeln.

Originalveröffentlichung:
Martin Aeschlimann, Tobias Brixner, Dominik Differt, Ulrich Heinzmann, Matthias Hensen, Christian Kramer, Florian Lükermann, Pascal Melchior, Walter Pfeiffer, Martin Piecuch, Christian Schneider, Helmut Stiebig, Christian Strüber und Philip Thielen: Perfect absorption in nanotextured thin films via Anderson-localized photon modes. Nature Photonics. 2015
DOI: 10.1038/nphoton.2015.159

Kontakt:
Professor Dr. Walter Pfeiffer, Universität Bielefeld
Fakultät für Physik
Telefon: 0521 106-5470
E-Mail: pfeiffer@physik.uni-bielefeld.de

Prof. Dr. Tobias Brixner, Universität Würzburg
Institut für Physikalische und Theoretische Chemie
Telefon 0931 31-86330
E-Mail: brixner@phys-chemie.uni-wuerzburg.de

Prof. Dr. Martin Aeschlimann, Technische Universität Kaiserslautern
Fachbereich Physik
Telefon 0631 205-2322
E-Mail: ma@physik.uni-kl.de

http://www.physik.uni-bielefeld.de/experi/d4/index.html

Media Contact

Sandra Sieraad idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Selen-Proteine …

Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…

Pendler-Bike der Zukunft

– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…

Neuartige Methode zur Tumorbekämpfung

Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…