Hochwertige energiereiche und dichte Ionenstrahlen durch Laserbeschleunigung
Die erreichbaren Energien, die Energieschärfe und Qualität wie auch Intensität der so erzeugten Ionenstrahlen wären für Anwendungen nutzbar – so z. B. für die Tumortherapie. Diese Technik der Laserbeschleunigung könnte in der Zukunft eine wesentlich kostengünstigere Alternative zu herkömmlichen Beschleunigersystemen darstellen. [Phys. Rev. Lett. 107, 185002 (2011)]
Kaum ein Gebiet in der Physik hat sich in den letzten Jahrzehnten so stürmisch entwickelt wie das der Hochleistungslaser. In der letzten Dekade war es vor allem die Möglichkeit der direkten Beschleunigung von geladenen Teilchen durch starke Laserfelder. Im Hintergrund steht die Idee, konventionelle Beschleunigeranlagen zukünftig durch wesentlich kompaktere und kostengünstigere Einrichtungen zu ersetzen. Dies ist von besonderem Interesse für die Tumortherapie mit Ionen. Diese wird bereits erfolgreich eingesetzt – z. B. am neuen Heidelberger Ionenstrahl-Therapiezentrum (HIT) – benötigt aber neben einem konventionellen Beschleuniger für eine optimale Bestrahlung aus allen Raumrichtungen im so genannten Rasterscanverfahren zur Strahlablenkung ein aufwendiges Magnetsystem von mehreren 100 Tonnen Masse.
In früheren Arbeiten hatten Forscher der Abteilung von Christoph Keitel am Max-Planck-Institut für Kernphysik Heidelberg in Modellrechnungen untersucht, auf welchem Wege mittels extrem starker Lichtfelder Ionenstrahlen mit den gewünschten Eigenschaften erzeugt werden können. Kernpunkte waren dabei eine ausreichend große Beschleunigung für verfügbare Laserintensitäten sowie eine hohe Energieschärfe (besser als 1 %) für das Rasterscanverfahren. Letztere war vor allem eine Schwäche der Beschleunigung in lasergenerierten extrem dichten Plasmen. Stattdessen wurde die direkte Beschleunigung von bereits erzeugten Ionen theoretisch modelliert.
Die Erforschung der Beschleunigungsmechanismen war aber nur der erste Schritt. Eine wesentliche Herausforderung liegt in der Entwicklung geeigneter Quellen zur Erzeugung der zu beschleunigenden Ionen in der erforderlichen Dichte. Herkömmliche Ionenquellen sind davon noch viele Größenordnungen entfernt. Eine alternative Möglichkeit stellen Laser-Ionenquellen dar, in denen ein Laser zunächst ein Target ionisiert und die so gewonnenen Ionen beschleunigt. In Zusammenarbeit mit Wissenschaftlern der American University of Sharjah (Vereinigte Arabische Emirate) und der Universität Rostock konnte die Heidelberger Gruppe nun theoretisch zeigen, dass durch Beschuss eines Wasserstoff-Gastargets mit speziellen hochintensiven Laserpulsen Protonenstrahlen mit bisher unerreichter Energie und Qualität erzeugt werden können.
Hierbei wird das Gas zunächst zu Beginn des Laserpulses bei ansteigender Intensität rasch ionisiert und die Elektronen von den schwereren Protonen weg beschleunigt, wobei sie relativistische Energien erreichen. Bei genügend hoher Stärke des Laserfeldes werden schließlich auch die Protonen direkt durch das Feld beschleunigt (Abb. 1). „Damit dies möglichst effizient geschieht, haben wir sog. frequenzmodulierte Laserpulse betrachtet, deren Lichtfrequenz sich während der Dauer des Pulses ändert“ – erklärt der an dem Projekt arbeitende Doktorand Benjamin Galow. „Ein gewöhnlicher Laserpuls mit fester Frequenz erzeugt praktisch keine Beschleunigung der schweren Ionen, da sich die Wirkung des hin- und her oszillierenden Feldes letztlich ausmittelt“ (s. Abb. 2a). Diese Symmetrie wird bei einem frequenzmodulierten Laserpuls gebrochen, wo in der mittleren Hälfte des Pulses das Feld langsam und mit einem Übergewicht in eine (hier positive) Richtung oszilliert (Abb. 2b).
Anhand mathematischer Modellrechnungen, die durch Computersimulationen unter realistischen Plasmabedingungen bestätigt wurden, demonstrieren die Forscher, dass mit verfügbaren Laserintensitäten (ca. 10^21 Watt pro Quadratzentimeter) Protonen von 250 Megaelektronenvolt Energie mit nur 1% Energiebreite in dichten Paketen von 10 Millionen Teilchen erzeugt werden können – dies entspricht auch den grundsätzlichen Anforderungen für eine mögliche Anwendung in der Tumortherapie. Hierfür müssten die Strahlen nach der Beschleunigung allerdings noch ionenoptisch bearbeitet werden, um Schwankungen der Laserpulse zu kompensieren, was noch eine technische Herausforderung darstellt. Zukünftige Lasersystem wie ELI oder HiPER könnten darüber hinaus die Möglichkeit eröffnen, energiescharfe Protonenstrahlen von mehreren Gigaelektronenvolt Energie zu erzeugen.
Originalveröffentlichung:
Benjamin J. Galow, Yousef I. Salamin, Tatyana V. Liseykina, Zoltán Harman, and Christoph H. Keitel:
Dense monoenergetic proton beams from chirped laser-plasma interaction.
Phys. Rev. Lett. 107, 185002 (2011), doi: 10.1103/PhysRevLett.107.185002
Kontakt:
Dr. Zoltán Harman
Max-Planck-Institut für Kernphysik
Saupfercheckweg 1, 69117 Heidelberg
Tel.: 06221/516-170
E-Mail: harman@mpi-hd.mpg.de
Media Contact
Weitere Informationen:
http://www.mpi-hd.mpg.de/keitel/harman/ http://link.aps.org/doi/10.1103/PhysRevLett.100.155004Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Neue Moleküle für neue Materialien
Graduiertenkolleg in der Chemie erhält millionenschwere Förderung der DFG. So genannte kovalente Bindungen sind das Rückgrat unserer Welt. Diese starken Bindungen – wie zum Beispiel zwischen zwei Sauerstoffatomen, die sich…
Hereon tauft ein ganz besonderes Schiff
Mit rund 400 Gästen ist heute die CORIOLIS feierlich getauft worden. Karin Prien, Wissenschaftsministerin des Landes Schleswig-Holstein, hat als Patin die offizielle Taufe des neuen Forschungsschiffs des Helmholtz-Zentrums Hereon übernommen….
Biobasierte Polyester für anspruchsvolle Langzeitanwendungen
Aktuelle biobasierte Kunststoffe sind oft nur für kurzlebige Anwendungen, wie Verpackungen geeignet, da sie unzureichende Langzeiteigenschaften aufweisen. Das neue Projekt »Biobasierte Polyester für anspruchsvolle Langzeitanwendungen« aus dem Fraunhofer-Institut für Betriebsfestigkeit…