Höchste Präzision: Mikrostrukturierte Faser vermisst Größe von Nanopartikeln
Forschende am Leibniz-Institut für Photonische Technologien (Leibniz-IPHT) haben ein neues Glasfaserdesign entwickelt, das außergewöhnlich lange Beobachtungen einer großen Anzahl einzelner, frei beweglicher Nanopartikel in einer Flüssigkeit ermöglicht. Dadurch kann die Größenverteilung von Nanoobjekten einer Probe mit noch höherer Präzision bestimmt werden. Damit legen die Wissenschaftlerinnen und Wissenschaftler die Grundlage, um umwelt- und bioanalytische Fragestellungen in Zukunft besser erforschen zu können.
Ob Wasseranalytik, Impfstoffherstellung oder die Untersuchung biologischer Proben – Gemische von Kleinstpartikeln kommen in nahezu allen Bereichen des täglichen Lebens vor und setzen sich aus einer Vielzahl verschiedener winzig kleiner Objekte in flüssigen Umgebungen zusammen. Die genaue Bestimmung einzelner Bestandteile eines solchen feinen Partikelgemisches innerhalb einer Flüssigkeit (Dispersion) stellt die Wissenschaft vor Herausforderungen – vor allem in Bezug auf die Breite ihrer Größenverteilung und das Vorhandensein verschiedener Partikelspezies, die sich in ihrer Größe nur geringfügig unterscheiden. Eine am Leibniz-IPHT entwickelte mikrostrukturierte Glasfaser (Einelementige-Antiresonanz-Faser) bietet das Potential, die Messgenauigkeit der Größencharakterisierung von Nanoobjekten deutlich zu verbessern.
Neue optische Glasfaser für hochgenaue Analysen
Mit der am Jenaer Institut realisierten optischen Spezialfaser lassen sich Nanoobjekte in wässriger Lösung mit einem Durchmesser kleiner als 20 Nanometer einschließen, einzeln verfolgen und deren Größe exakt bestimmen. Damit wird die Voraussetzung geschaffen, Größenverteilungen von Nanopartikeln in Gemischen präzise analysieren zu können. Hierzu verfügt die Glasfaser über einen dünnwandigen und daher lichtleitenden Mikrokanal von 17 Mikrometern Durchmesser.
Für die Untersuchung einer Probe wird die Partikelflüssigkeit mit der Hohlkernfaser in Kontakt gebracht, die sich infolge der Kapillarkraft mit der Flüssigkeitsprobe füllt. Das eingekoppelte Licht wird entlang des integrierten Fluidkanals der Faser geführt. Durch die nur 756 Nanometer dicke Glaswand können die zu untersuchende Probe und die darin befindlichen Nanoobjekte intensiv und gleichmäßig beleuchtet werden. Das von einzelnen Nanopartikeln gestreute Licht ermöglicht die Verfolgung ihrer Position und damit hochgenaue mikroskopische Beobachtungen. „Mit unserer neuen faseroptischen Methode lassen sich einzelne Objekte im Nanometermaßstab über lange Zeiträume verfolgen. Das ermöglicht uns, deren Größe außerordentlich präzise und zuverlässig zu bestimmen, so dass wir einzelne Komponenten in einem Gemisch genau charakterisieren können“, erklärt Mona Nissen, Doktorandin in der Abteilung Faserphotonik am Leibniz-IPHT.
In experimentellen Studien mit Gemischen von Partikeln mit geringer Größendifferenz, bestehend aus Polystyrol-Nanokugeln mit mittleren Durchmessern von 100 und 125 Nanometern, konnten die Forschenden eine hohe präzise Charakterisierung mithilfe der neuartigen Glasfaser zeigen. Sowohl in monodispersen Partikelmischungen mit Nanoobjekten einer Spezies und Größenklasse als auch in polydispersen Partikelkompositionen mit Objekten unterschiedlicher Eigenschaften und Größen konnten die Wissenschaftlerinnen und Wissenschaftler die Größenverteilung äußerst genau messen sowie einzelne Komponenten identifizieren.
Anwendungen für nanoskalige Einsatzgebiete
Der vorgestellte faseroptische Ansatz bietet das Potential, in nanotechnologischen Anwendungen im Bereich der Umwelt- und Bioanalytik sowie in Chemie und Medizin zur Größenkontrolle von Nanopartikeln Einsatz zu finden. Anwendungsszenarien sehen die Forschenden beispielsweise bei der Untersuchung von Gewässern auf Mikroplastik-Rückstände, der Analyse von Patientenproben, wie zum Beispiel Urin, der Beobachtung von Syntheseprodukten in den chemischen Wissenschaften oder der Entwicklung von Medikamenten.
Ihre Ergebnisse veröffentlichten die Leibniz-IPHT-Forschenden in der Fachzeitschrift Small (Wiley-VCH Verlag).
Über das Leibniz-Institut für Photonische Technologien
Im Mittelpunkt der Forschung am Leibniz-IPHT steht das Licht. Wissenschaftlerinnen und Wissenschaftler erforschen innovative photonische Verfahren und Werkzeuge für die Anwendung in der klinischen Diagnostik, etwa der Infektions- und Krebsdiagnostik, der Pharmazie und Prozesskontrolle sowie in der Lebensmittel- und Umweltsicherheit. Ein wesentliches Ziel ist es, die Translation zu beschleunigen: die Umsetzung von Forschungsergebnissen in die Praxis — from Ideas to Instruments. https://www.leibniz-ipht.de/de/
Wissenschaftliche Ansprechpartner:
Prof. Dr. Markus Schmidt
Leiter Abteilung Faserphotonik
Telefon: +49 (0) 3641 · 206-140
Email: markus.schmidt@leibniz-ipht.de
Originalpublikation:
Nissen, Mona et al., Small, 2022, https://doi.org/10.1002/smll.202202024
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Ist der Abrieb von Offshore-Windfarmen schädlich für Miesmuscheln?
Rotorblätter von Offshore-Windparkanlagen unterliegen nach mehrjährigem Betrieb unter rauen Wetterbedingungen einer Degradation und Oberflächenerosion, was zu erheblichen Partikelemissionen in die Umwelt führt. Ein Forschungsteam unter Leitung des Alfred-Wegener-Instituts hat jetzt…
Per Tierwohl-Tracker auf der Spur von Krankheiten und Katastrophen
DBU-Förderung für Münchner Startup Talos… Aus dem Verhalten der Tiere können Menschen vieles lernen – um diese Daten optimal auslesen zu können, hat das Münchner Startup Talos GmbH wenige Zentimeter…
Mit Wearables die Gesundheit immer im Blick
Wearables wie Smartwatches oder Sensorringe sind bereits fester Bestandteil unseres Alltags und beliebte Geschenke zu Weihnachten. Sie tracken unseren Puls, unsere Schrittzahl oder auch unseren Schlafrhythmus. Auf welche Weise können…