Intelligente Mikrosysteme als Multitalent

Beispiele miniaturisierter MEMS Scannerspiegel.
©Fraunhofer IPMS

Fraunhofer IPMS präsentiert auf SPIE.Photonics West in San Francisco neueste photonische Technologien.

Digitalisierung, Automatisierung und Effizienz sind die Schlagwörter der Industrie der Zukunft. Dafür entwickelt das Fraunhofer-Institut für Photonische Mikrosysteme IPMS kundenspezifische Sensoren, Aktoren und optische Komponenten. Diese stellen die Schlüsseltechnologien für IoT und zahlreiche Zukunftsanwendungen mit künstlicher Intelligenz dar.

Das Fraunhofer IPMS zählt zu den führenden Forschungseinrichtungen für die Entwicklung und Herstellung elektronischer, mechanischer und optischer Komponenten und Bauelemente und deren Integration in intelligente Systeme. Mit seinen innovativen mikro-elektro-mechanischen Systemen (MEMS) und mikro-opto-elektro-mechanischen Systemen (MOEMS) erschließt das Institut neue Anwendungen durch verbesserte Eigenschaften und zusätzliche Funktionen, wie beispielsweise kleinere Abmessungen, größere Energieeffizienz und höhere Performance.

Photonische Mikrosysteme für optische Lichtsteuerung

Die photonischen Systeme des Fraunhofer IPMS können mittels kleiner auslenkbarer Spiegel Licht modulieren und so auf einzigartige Weise Bilder und Strukturen erzeugen. Das Forschungsinstitut entwickelt dafür Flächenlichtmodulatoren mit bis zu mehreren Millionen Spiegeln auf einem Halbleiterchip. Hauptanwendungsgebiete für Spiegelmatrizen liegen in den Bereichen Mikrolithographie im tiefen Ultraviolett-Bereich, Herstellung von Leiterplatten (PCB), Halbleiterinspektion und -messtechnik sowie in der Adaptiven Optik, der Astronomie, der Holografie und der Mikroskopie. Mit seinen Entwicklungen in diesem Bereich ist das Fraunhofer IPMS derzeit weltweit führend.

Kundenspezifische, hochminiaturisierte MEMS-Scanner

Das Fraunhofer IPMS verfügt über langjährige Erfahrung in der Entwicklung und Herstellung von kundenspezifischen, hochminiaturisierten MEMS-Scannern. Die Bauelemente zeichnen sich durch große Scanwinkel und hohe Scanfrequenzen aus und zeigen eine ausgezeichnete Langzeitstabilität. Anwendungen finden sich in der scannenden Bildgebung, Laserscanning-Mikroskopie, Endoskopie, LiDAR-Sensorik für das autonome Fahren oder bei Head-up-Displays, Head-mounted Displays sowie AMR-Displays.

Antriebselektronik für elektromagnetische Vektorscanner.
© Fraunhofer IPMS

Eine der neuesten Entwicklungen des Instituts sind die ersten hybriden 2D-Vektorscannermodule mit elektromagnetischem Antrieb. Sie erlauben die 2-dimensionale quasi-statische Auslenkung bei größeren Spiegelaperturen sowie eine hohe vektoriellen Positioniergeschwindigkeit. »Dieser neue Ansatz erweitert den Parameterraum der bisherigen monolithischen Scanner deutlich. Dabei bleiben die etablierten Vorzüge der Fraunhofer IPMS-Scannerspiegeltechnologie – hohe optische Planarität und Entkopplung der Scanachsen durch kardanische Aufhängung sowie die Ermüdungsfreiheit der Federelemente – erhalten«, erklärt Dr. Jan Grahmann vom Fraunhofer IPMS.

Aufbauend auf der Scannertechnologie ist ein Spektrometer entstanden, welches in Echtzeit zuverlässig feste, flüssige und gasförmige Stoffe detektiert. Das aktuelle System adressiert den bewährten Spektralbereich von 950 nm bis 1900 nm mit einer spektralen Auflösung von 10 nm. Aktuell erreicht das System ein Bauvolumen von ca. 2 cm³. Eine weitere Miniaturisierung ist jedoch möglich. Ein Demonstrationssystem veranschaulicht die Erkennung weißer Pulver. Hierbei könnte es sich um Salz, Zucker, Stärke oder Mehl handeln. Es können aber auch zahlreiche andere visuell ähnlich erscheinende Substanzen zuverlässig erkannt und zugeordnet werden. Anwendungen finden sich in der Erkennung pharmazeutischer und chemischer Stoffe bis hin zu Gefahrstoffen und dem Recycling.

Die Mikroscanner des Fraunhofer IPMS sind zudem Herzstück eines neuartigen Laser-Scanning-Mikroskops zur Tumorabgrenzung. Mit dessen Hilfe können Krebsoperationen schneller, präziser und sicherer gemacht werden. Noch im Operationssaal kann die Ärztin oder der Arzt mithilfe des Mikroskops das Gewebe untersuchen, aus dem der Tumor gerade herausgeschnitten wurde. Ein vorher aufgebrachter Fluoreszenz-Marker macht alle Krebszellen sichtbar, die nach dem Schnitt eventuell noch zurückgeblieben sind. Diese lassen sich dann restlos und präzise entfernen. Das umliegende Gewebe wird dabei geschont, weil man im Mikroskop-Display genau sieht, wo das gesunde Gewebe anfängt. Und niemand muss mehr auf ein Laborergebnis warten.

Das Fraunhofer IPMS stellt diese Forschungsarbeiten vom 31. Januar bis 2. Februar auf der weltweit führenden Messe für photonische Technologien – der SPIE Photonics West – in San Francisco vor. Dort erhalten Besucher am Stand Halle E #3387 zudem Informationen über die Entwicklungen des Instituts zu integrierten optischen Biosensoren für Point-of-Care-Anwendungen in der Medizin und zu einem kontaktfreien medizinischen Radar zur Patientenüberwachung.

Über das Fraunhofer IPMS
Das Fraunhofer-Institut für Photonische Mikrosysteme IPMS steht für angewandte Forschung und Entwicklung in den Bereichen intelligente Industrielösungen, Medizintechnik und Mobilität. Forschungsschwerpunkte sind miniaturisierte Sensoren und Aktoren, integrierte Schaltungen, drahtlose und drahtgebundene Datenkommunikation sowie kundenspezifische MEMS-Systeme. In den beiden Reinräumen findet Forschung und Entwicklung auf 200 sowie 300 mm Wafern statt. Das Angebot reicht von der Beratung über die Prozessentwicklung bis hin zur Pilotserienfertigung.

https://www.ipms.fraunhofer.de/de/press-media/press/2023/Intelligente-Mikrosysteme-als-Multitalent.html

Media Contact

Franka Balvin Marketing & Kommunikation
Fraunhofer-Institut für Photonische Mikrosysteme (IPMS)

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

3D-Tumormodell für Retinoblastomforschung mit Fokus auf Tumor-Umgebungs-Interaktionen.

Retinoblastom: Aufschlussreiche Untersuchung von Tumorzellen der Netzhaut

Ein Forschungsteam der Medizinischen Fakultät der Universität Duisburg-Essen und des Universitätsklinikums Essen hat ein neues Zellkulturmodell entwickelt, mit dem die Wechselwirkungen zwischen Tumorzellen und ihrer Umgebung beim Retinoblastom besser untersucht…

Private Brunnen als Notwasserversorgung zur Stärkung der Katastrophenresilienz.

Eine gut erledigte Aufgabe: Wie Hiroshimas Grundwasserstrategie bei der Bewältigung von Überschwemmungen half

Grundwasser und multilaterale Zusammenarbeit in den Wiederaufbaubemühungen milderten die Wasserkrise nach der Überschwemmung. Katastrophen in Chancen umwandeln Die Gesellschaft ist oft anfällig für Katastrophen, aber wie Menschen während und nach…

DNA Origami-Strukturen steuern biologische Membranen für gezielte Medikamentenabgabe

Die Zukunft gestalten: DNA-Nanoroboter, die synthetische Zellen modifizieren können

Wissenschaftler der Universität Stuttgart haben es geschafft, die Struktur und Funktion biologischer Membranen mithilfe von „DNA-Origami“ zu kontrollieren. Das von ihnen entwickelte System könnte den Transport großer therapeutischer Lasten in…