JET bereitet energieerzeugende Fusionstests vor
Europäische Gemeinschaftsanlage plant 2021 wieder Experimente mit Deuterium-Tritium-Plasmen.
An dem europäischen Gemeinschaftsexperiment JET – dem Joint European Torus, der weltweit größten Fusionsanlage – in Culham/Großbritannien sind im kommenden Jahr Plasmaexperimente geplant, die Fusionsenergie erzeugen. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Plasmaphysik (IPP) in Garching haben intensiv zu den Vorbereitungen beigetragen. JET ist die zurzeit einzige Anlage, die mit dem Brennstoff eines künftigen Fusionskraftwerks experimentieren kann.
Im europäischen Fusionsforschungsprogramm hat der Tokamak JET die Aufgabe, Plasmen in der Nähe der Zündung zu untersuchen. Diese weltweit größte Fusionsanlage ist die zurzeit einzige, die mit dem Brennstoff eines künftigen Fusionskraftwerks experimentieren kann, den beiden Wasserstoff-Sorten Deuterium und Tritium, dem schweren und überschweren Wasserstoff. Alle anderen Anlagen arbeiten mit Test-Plasmen aus leichtem Wasserstoff oder Deuterium.
In der ersten Deuterium-Tritium-Kampagne 1991 ist es mit JET zum ersten Mal in der Geschichte der Fusionsforschung gelungen, Energie durch Kernfusion freizusetzen. Für die Dauer von zwei Sekunden lieferte das Plasma eine Fusionsleistung von 1,8 Megawatt. 1993 wurde JET nach dem Vorbild der IPP-Anlagen ASDEX und ASDEX Upgrade mit einem neuen Bauteil – einem sogenannten Divertor – ausgerüstet. In der zweiten Deuterium-Tritium-Kampagne 1997 mit verändertem Mischungsverhältnis der Brennstoffe konnte JET die Fusionsleistung auf 16 Megawatt steigern. Das entspricht mehr als der Hälfte der aufgewendeten Heizleistung. Für einen Nettogewinn an Energie ist das JET-Plasma allerdings zu klein. Dies ist die Aufgabe des internationalen Experimentalreaktors ITER, der zurzeit in Cadarache in Südfrankreich aufgebaut wird.
Von 2009 bis 2011 wurde die frühere Kohlenstoff-Auskleidung des Plasmagefäßes durch eine Mischung aus Beryllium und – wiederum nach dem Vorbild von ASDEX Upgrade – aus Wolfram ersetzt. Die gleichen Materialien sind auch für ITER vorgesehen: Wolfram ist widerstandsfähiger als Kohlenstoff, der überdies zu viel Wasserstoff einlagert. Allerdings stellt die metallische Wand hohe Anforderungen an die Qualität der Plasmaführung. Eine Voraussetzung dafür war der Ausbau der Neutralteilchen-Plasmaheizung, die seit kurzem gut 30 Megawatt in das Plasma einspeisen kann.
Anschließend war man über das ganze Jahr 2020 hinweg in aufwändiger Detailarbeit damit beschäftigt, unter den veränderten Wand-Bedingungen mit Plasmen aus Deuterium die passenden Plasma-Szenarien für die dritte Deuterium-Tritium-Kampagne zu entwickeln. Die für diese Perfektionierung der Betriebsweisen zuständige Gruppe von etwa hundert Wissenschaftlerinnen und Wissenschaftlern wurde von Dr. Jörg Hobirk und Dr. Athina Kappatou aus dem IPP sowie zwei weiteren Forschern aus Fusionslaboratorien in Belgien und Großbritannien geleitet. Die Ergebnisse – stabile Hochleistungsplasmen in Deuterium über rund fünf Sekunden – stimmen zuversichtlich für den kommenden Tritium-Betrieb.
Mit der dritten Deuterium-Tritium-Kampagne will man vor allem Daten zur Vorbereitung der Experimente mit dem Experimentalreaktor ITER gewinnen. „Diese Untersuchungen sind von großer Bedeutung“, sagt Jörg Hobirk, „weil die bisherigen JET-Werte, die in die Vorbereitung der ITER-Experimente eingehen, nicht mit einer ITER-ähnlichen Metallwand, sondern mit einer Kohlenstoff-Wand erzielt wurden“.
Begonnen wird zunächst mit Experimenten in reinem Tritium. Hierbei wird zwar kaum Energie freigesetzt, aber es bietet sich „die einmalige Gelegenheit, die Eigenschaften von Tritium- und Deuterium-Plasmen vergleichen zu können und den Einfluss des Isotopeneffekts auf das Plasmaverhalten zu studieren, zum Beispiel auf die Turbulenz im Plasma oder das Dichte- und Temperaturprofil“, so Jörg Hobirk. Nach einer sorgfältigen Auswertung soll dann in der zweiten Jahreshälfte an JET die dritte und letzte Deuterium-Tritium-Kampagne starten.
Hintergrund
JET wurde von den Mitgliedern des Europäischen Fusionsprogramms gemeinsam konzipiert und gebaut und wird seit 1983 auch gemeinsam betrieben. Für die technischen Abläufe ist das englische Fusionszentrum „Culham Centre for Fusion Energy“ in Culham bei Oxford zuständig, während zeitweise abgeordnete Wissenschaftler und Techniker aus den Laboratorien des europäischen Fusionsprogramms EUROfusion kampagnenweise an der Anlage arbeiten. Mit zahlreichen Abordnungen ist das IPP ein wichtiger Teilnehmer des JET-Programms.
Weitere Informationen:
Media Contact
Alle Nachrichten aus der Kategorie: Physik Astronomie
Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.
Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.
Neueste Beiträge
Lange angestrebte Messung des exotischen Betazerfalls in Thallium
… hilft bei Zeitskalenbestimmung der Sonnenentstehung. Wie lange hat eigentlich die Bildung unserer Sonne in ihrer stellaren Kinderstube gedauert? Eine internationale Kollaboration von Wissenschaftler*innen ist einer Antwort nun nähergekommen. Ihnen…
Soft Robotics: Keramik mit Feingefühl
Roboter, die Berührungen spüren und Temperaturunterschiede wahrnehmen? Ein unerwartetes Material macht das möglich. Im Empa-Labor für Hochleistungskeramik entwickeln Forschende weiche und intelligente Sensormaterialien auf der Basis von Keramik-Partikeln. Beim Wort…
Klimawandel bedroht wichtige Planktongruppen im Meer
Erwärmung und Versauerung der Ozeane stören die marinen Ökosysteme. Planktische Foraminiferen sind winzige Meeresorganismen und von zentraler Bedeutung für den Kohlenstoffkreislauf der Ozeane. Eine aktuelle Studie des Forschungszentrums CEREGE in…