Kernfusion durch künstliche Blitze

Künstlerische Darstellung der Potentialbarriere der Fusionsreaktion von Bor-11 mit einem Proton, bei der drei Alphateilchen als Reaktionsprodukte entstehen. Das Tunneln des Protons kann dabei durch gepulste elektrische Felder verstärkt werden.
(c) HZDR | Sahneweiß

Fusionsprozesse lassen sich durch gepulste elektrische Felder anstoßen.

Gepulste elektrische Felder, die zum Beispiel durch Blitzeinschläge verursacht werden, machen sich als Spannungsspitzen bemerkbar und stellen eine zerstörerische Gefahr für elektronische Bauteile dar. Sie richten beträchtlichen Schaden an. Ein Team vom Helmholtz-Zentrum Dresden-Rossendorf (HZDR) hat jetzt herausgefunden, dass solche Spannungsspitzen durchaus nützliche Eigenschaften haben können. In der Fachzeitschrift Physical Review Research (DOI: 10.1103/PhysRevResearch.3.033153) berichten die Wissenschaftler, wie sich zum Beispiel Kernfusionsprozesse durch extrem starke und schnelle gepulste elektrische Felder deutlich verstärken lassen.

Kernfusionen, wie sie beispielsweise in der Sonne stattfinden, werden durch den quanten-mechanischen Tunneleffekt ermöglicht. „Eine Folge des Tunneleffekts ist es, dass gleichartig geladene Teilchen ihre gegenseitige Abstoßung überwinden können, auch wenn ihre Energie dafür eigentlich gar nicht ausreicht – zumindest nicht nach den Gesetzen der klassischen Mechanik“, sagt Prof. Ralf Schützhold, Leiter der Abteilung Theoretische Physik am HZDR, und fährt fort: „So etwas können wir zum Beispiel bei der Verschmelzung zweier leichter Atomkerne beobachten: Je stärker sich ein Kern dem anderen nähert, desto größer wird die Abstoßung, die wir uns bildlich als einen sich vor dem Kern auftürmenden Berg vorstellen können, die sogenannte Potentialbarriere. Anstatt den energieaufwändigeren Weg über den Gipfel zu nehmen, erlauben die Gesetze der Quantenmechanik, dass der Kern energetisch deutlich günstiger geradewegs durch diesen Berg dringt beziehungsweise ‚hindurchtunnelt‘ – und schließlich fusionieren kann.“

Obwohl der Tunneleffekt in vielen Bereichen der Physik eine wichtige Rolle spielt und erstmals bereits vor fast einhundert Jahren beschrieben wurde, ist unser Verständnis des Vorgangs auch heute noch lückenhaft. „Verschiedene Facetten des Einflusses elektrischer Felder auf Tunnelprozesse waren schon bekannt. So können elektrische Felder die Teilchen zusätzlich beschleunigen und dadurch zu mehr Energie verhelfen. Außerdem können sie die Potentialbarriere deformieren und auf diesem Weg die Tunnelwahrscheinlichkeit erhöhen“, umreißt Dr. Christian Kohlfürst die Situation zu Beginn ihrer Forschungen.

Sein Kollege Dr. Friedemann Queisser bringt ihre Ergebnisse kurz auf den Punkt: „Unsere Berechnungen zeigen jetzt erstmals eine Besonderheit von gepulsten, sich zeitlich schnell verändernden elektrischen Feldern: Sie können dafür sorgen, dass die Teilchen, bildlich gesprochen, aus der Potentialbarriere herausgeschubst werden und so leichter tunneln.“ Das zeigen die Rechnungen des Teams vom HZDR ganz konkret an verschiedenen Beispielen, unter anderem auch an einer für eine mögliche Energieerzeugung interessanten Fusionsreaktion: der Verschmelzung eines Protons mit dem Isotop Bor-11.

Fusionsreaktion mit Vorteilen

Sie ist vor allem aufgrund des relativ leicht verfügbaren Brennstoffs interessant. Dabei entstehen drei jeweils zweifach positiv geladene Alphateilchen. Bemerkenswert an dieser Reaktion: Die Energie wird in Form geladener Teilchen freigesetzt und nicht als Neutronenstrahlung wie bei den derzeit bekanntesten Fusionsreaktionen. Das hat Vorteile: Zum einen würden die Probleme, die mit dem Neutronenfluss verbunden sind, deutlich reduziert, wie etwa die Gefahren im Umgang mit ionisierender Strahlung. Zum anderen kann die Energie geladener Teilchen direkt und damit viel einfacher in Elektrizität umgewandelt werden.

Die für die Nutzung der Reaktion erforderlichen Bedingungen sind jedoch noch extremer als die der im aktuellen Fusionsreaktor-Experiment ITER favorisierten Deuterium-Tritium-Fusion. Die Zündung der Proton-Bor-Reaktion ist im Vergleich dazu schwieriger, die Wissenschaft sucht noch nach gangbaren Wegen. Das Team um Schützhold zeigt nun eine Möglichkeit auf: „Unseren Berechnungen zufolge kann ein hinreichend schnelles und starkes gepulstes elektrisches Feld nicht nur die Deuterium-Tritium-Fusion, sondern auch die Proton-Bor-Reaktion deutlich verstärken.“

Die Erzeugung solcher Felder ist jedoch sehr schwierig. „Wir können uns das prinzipiell wie bei einem Gewitter vorstellen, bei dem sich die in riesigen Wolkenformationen gespeicherte Energie in kürzester Zeit und auf engstem Raum in der Form eines Blitzschlags entlädt. Weltweit sind Anlagen im Bau oder in Planung, die immer höhere Energien auf immer kürzere Zeitspannen und immer kleinere Raumbereiche konzentrieren sollen“, sagt Schützhold. Leider sind die heute verfügbaren Anlagen noch nicht ganz in der Lage, derartig schnelle und starke „künstliche Blitze“ zu erzeugen.

Es gibt aber einen möglichen Ausweg: So kann das elektrische Feld eines schnell und vor allem dicht am Proton vorbeifliegenden Alphateilchens wie ein solches gepulstes elektrisches Feld wirken und so stark zustoßen, dass das Proton die Potentialbarriere von Bor-11 durchtunneln und die Fusionsreaktion auslösen kann. Alphateilchen mit der dafür notwendigen Pulsenergie werden bei der Proton-Bor-Reaktion tatsächlich erzeugt, können aber auch von außen eingeschossen werden.

Publikation:
C. Kohlfürst, F. Queisser, R. Schützhold: Dynamically assisted tunneling in the impulse regime, in Physical Review Research, 2021 (DOI: 10.1103/PhysRevResearch.3.033153)

Weitere Informationen:
Prof. Ralf Schützhold | Direktor
Abteilung für Theoretische Physik am HZDR
Tel: +49 351 260 3618 | E-Mail: r.schuetzhold@hzdr.de

Medienkontakt:
Simon Schmitt | Leitung und Pressesprecher
Abteilung Kommunikation und Medien am HZDR
Tel.: +49 351 260 3400 | E-Mail: s.schmitt@hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:

• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?

• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?

• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?

Das HZDR entwickelt und betreibt große Infrastrukturen, die auch von externen Messgästen genutzt werden: Ionenstrahlzentrum, Hochfeld-Magnetlabor Dresden und ELBE-Zentrum für Hochleistungs-Strahlenquellen.

Es ist Mitglied der Helmholtz-Gemeinschaft, hat sechs Standorte (Dresden, Freiberg, Görlitz, Grenoble, Leipzig, Schenefeld bei Hamburg) und beschäftigt knapp 1.200 Mitarbeiter*innen – davon etwa 500 Wissenschaftler*innen inklusive 170 Doktorand*innen.

Wissenschaftliche Ansprechpartner:

Prof. Ralf Schützhold | Direktor
Abteilung für Theoretische Physik am HZDR
Tel: +49 351 260 3618 | E-Mail: r.schuetzhold@hzdr.de

Originalpublikation:

C. Kohlfürst, F. Queisser, R. Schützhold: Dynamically assisted tunneling in the impulse regime, in Physical Review Research, 2021 (DOI: 10.1103/PhysRevResearch.3.033153)

Weitere Informationen:

https://www.hzdr.de/presse/artificial_lightning_nuclear_fusion

Media Contact

Simon Schmitt Kommunikation und Medien
Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…