Magnetisches Nanoschachbrett baut sich von selbst zusammen

Das magnetische Nanoschachbrett. Oberer Teil: Abbildung der Moleküle mit einem Rastertunnelmikroskop. Bei zwei Molekülen ist die Molekülstruktur eingezeichnet. Unterer Teil: schematische Darstellung der Selbstorganisation der Moleküle – sie passen wie Puzzleteile zusammen und fügen sich so immer abwechselnd aneinander. Grafik: Paul Scherrer Institut/C. Wäckerlin<br>

Die magnetischen Moleküle wurden so konstruiert, dass sie von selbst ihren Platz im Nanoschachbrett finden. Damit baut sich das Nanoschachbrett von selbst zusammen. Die Forscher konnten gezielt den Quantenzustand eines Teils der Moleküle manipulieren. Die Möglichkeit, die Zustände einzelner Quantenobjekte gezielt zu verändern, ist eine wichtige Voraussetzung für die Entwicklung von Quantencomputern.

Forscher des Paul Scherrer Instituts und des Indian Institute of Science Education and Research (Pune, Indien) haben eine regelmässige Anordnung winziger Magnete in einer Ebene hergestellt und konnten darin gezielt in jedem zweiten den Magnetismus „abschalten“ – und damit seinen Quantenzustand manipulieren. So entstand ein „Schachbrett“ im Nanomassstab, dessen Felder abwechselnd verschiedene magnetische Eigenschaften hatten, z.B. „magnetisch“ und „unmagnetisch“.

Konkret haben die Forscher mit flachen, etwa 1 Nanometer grossen, organischen Molekülen gearbeitet, in deren Mitte sich jeweils ein einzelnes magnetisches Metallatom befand – Eisen oder Mangan. Dieses machte das Molekül zu einem winzigen Magneten, der wesentlich kleiner ist als ein magnetisches Bit in einer Computerfestplatte, das aus mehr als einer Million magnetischer Atome besteht. Damit der magnetische Zustand in den Molekülen stabil blieb, wurden sie auf eine magnetische Kobaltoberfläche aufgedampft. Die Kobaltoberfläche zwang den Molekülen eine bestimmte Magnetisierungsrichtung auf.

Da die Moleküle jeweils nur ein magnetisches Atom besitzen, sind sie so klein, dass sie den Gesetzen der Quantenphysik unterworfen sind. Das Verständnis solcher Quantenobjekte und deren Manipulation sind Voraussetzungen für die Entwicklung von Quantencomputern, die manche Berechnungen wesentlich schneller durchführen könnten als heutige Geräte.

Das magnetische Nanoschachbrett baut sich von selbst

„Bisher wurden die magnetischen Atome höchst aufwändig Atom für Atom angeordnet. Wir haben die magnetischen Atome in Moleküle eingebaut und diese Moleküle so konstruiert, dass sie sich auf der Oberfläche von selbst abwechselnd so anordnen, dass ein Schachbrettmuster entsteht. Das magnetische Nanoschachbrett kann sich also von selbst zusammenbauen“, erläutert Christian Wäckerlin, Doktorand am PSI.
Magnetismus gezielt geschaltet

„Als wir die Moleküle dann Ammoniakgas aussetzten, verband sich mit jedem der Metallatome ein Ammoniak-Molekül. Dadurch wurde das mit Ammoniak verbundene Eisenatom unmagnetisch; der Magnetismus des Mangans veränderte sich nur unwesentlich. Somit wurde bei jedem zweiten der Moleküle im Nanoschachbrett der Quantenzustand von „magnetisch“ in „unmagnetisch“ umgewandelt. Mit einem Rastertunnelmikroskop lässt sich das Nanoschachbrett abbilden und die magnetischen Eigenschaften lassen sich mit dem Licht der Synchrotron Lichtquelle Schweiz des PSI studieren. Erwärmt man das ganze System etwas, lösen sich die Ammoniakmoleküle wieder und der ursprüngliche Zustand ist wieder hergestellt“, beschreibt Wäckerlin die Abläufe. Damit ist es natürlich noch ein sehr weiter Weg zu einem tatsächlichen Quantencomputer, insbesondere fehlt die ebenfalls wichtige Kopplung und Verschränkung der Quantenzustände. „Wir haben aber vorgeführt, wie man in einem einfachen, hochgradig geordneten System die Eigenschaften von sehr vielen Atomen reproduzierbar schalten kann.“
Auch andere Anwendungen denkbar

Greifbarer sind andere Anwendungen – man könnte das magnetische Schachbrett zum Beispiel für einen Ammoniak-Sensor verwenden. Dadurch dass nach dem Bedampfen mit Ammoniak nicht mehr jedes, sondern nur jedes zweite Molekül magnetisch ist, ändert sich auch die Art wie die Anordnung auf Licht reagiert. Diese Änderung liesse sich mit einer recht einfachen Lichtquelle nachweisen. Und damit würde man auch sehen, dass Ammoniak in der Luft vorhanden ist.

Über das PSI
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Mensch und Gesundheit, sowie Energie und Umwelt. Mit 1500 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

Kontakt:
Christian Wäckerlin, Labor für Mikro- und Nanotechnologie,
Paul Scherrer Institut, 5232 Villigen PSI,
Tel. +41 56 310 52 44, christian.waeckerlin@psi.ch

Prof. Dr. Thomas Jung, Labor für Mikro- und Nanotechnologie,
Paul Scherrer Institut, 5232 Villigen PSI,
Tel. +41 56 310 45 18, E-Mail: thomas.Jung@psi.ch

Prof. Dr. Nirmalya Ballav, Department of Chemistry,
Indian Institute of Science Education and Research, 411 008 Pune, Indien
Tel: +91 20 2590 8215, E-mail: nballav@iiserpune.ac.in
Originalveröffentlichung:
Two-dimensional Supramolecular Electron Spin Arrays
C. Wäckerlin, J. Nowakowski, S.-X. Liu, M. Jaggi, D. Siewert, J. Girovsky, A. Shchyrba, T. Hählen, A. Kleibert, P. M. Oppeneer, F. Nolting, S. Decurtins, T. A. Jung, N. Ballav
Advanced Materials 2013, Online-Vorabveröffentlichung 22. Januar 2013
DOI: 10.1002/adma.201204274 http://dx.doi.org/10.1002/adma.201204274

Media Contact

Dagmar Baroke Paul Scherrer Institut (PSI)

Weitere Informationen:

http://www.psi.ch

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Schimpanse in einem tropischen Wald, der genetische Anpassungen zum Überleben zeigt.

Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen

Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…

RNA-bindendes Protein RbpB reguliert den Stoffwechsel der Darmmikrobiota in Bacteroides thetaiotaomicron.

Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität

HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…